CODEN:LUTEDXATEIE-5370)/1-87/(2016)

Automation of UDS-based
flashing for software testing
purposes in CANoe

C
0
o+

v

-

O
o+

D
<
O

-

©

@)

C
—

)

)
S

@)

-
LL
©

U
.
o+

U
i
L

Richard Pendrill

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Industrial

Automation of UDS-based
flashing for software testing
purposes in CANoe

Richard Pendrill

E
(S

o,
NI
2 S
055118 >

UNIVERSITET
Division of Industrial Electrical Engineering and Automation

Abstract

This Master’s thesis investigates the possibility of adding full vendor-specific
software loading sequence support to CANoe, in order to provide the possibility of
testing the compliance of Electrical Control Units (ECU:s) from several different
vendors to the international standard Unified Diagnostic Services ISO14229-1.
Unified Diagnostic Services (UDS) specifies how diagnostic communication
should be handled between a diagnostic tester and an on-vehicle ECU. This
project was able to develop a framework for UDS-based software loading tests
which could be run across several different ECU:s from BorgWarner PowerDrive
Systems customers. This was achieved by focusing on creating a common format,
downloading sequence and creating test cases which could be run across all
projects based on the generic requirements identified in UDS.

Sammanfattning

Det hidr examensarbetet undersoker mdjligheten att utfora fullstindig tillverkar-
specifik mjukvaruladdning i testmiljon CANoe for att kunna testa sa att elektriska
kontrollenheter (ECU:er) fran flera olika tillverkare uppfyller de krav som finns i
den internationella standarden Unified Diagnostic Services (UDS). UDS beskriver
hur diagnostisk kommunikation skall hanteras mellan en diagnostik testare och en
ECU. I det hér projektet var det mdjligt att skapa ett ramverk for automatiserade
test pad mjukvaruladdningssekvensen som kunde anvéndas for test i flera olika
ECU:er fran BorgWarners kunder. Detta var mojligt genom att fokusera pa att
skapa ett gemensamt filformat och nedladdningssekvens for projekten hos
BorgWarner samt utveckla testfall som kunde koras i alla projekt baserade pa de
generiska kraven som identifierats i UDS.

Acknowledgements

Firstly I want to thank Mattias Wozniak and Méns Andersson for the idea to this
project, which fit perfectly as a Master’s thesis as the amount of work, could be
customized to a large extent. Mattias Wozniak has been the primary supervisor for
this project; always answering every question I had and helped me structure the
solution to this project by giving me relevant examples to follow and continuously
discussing the structure. 1 also want to especially thank Marie Akesson who
provided relevant feedback continuously and together with the others in the team
at the software-testing department made me feel welcome at BorgWarner PDS.
Mans Andersson also deserves another mention for early on in the project
involving me in a real customer issue giving me an idea of what test cases might
be relevant investigating in the second part of the project. I also want to thank the
rest of the team TTT-SW that also always took my questions seriously and helping
out to their best ability when Mattias Wozniak was not available. The amount of
support and advice I have received from the team at TTT-SW meant to some
degree 1 did not need as much advice from my university supervisor Gunnar
Lindstedt and examiner Ulf Jeppsson but it felt like if I would have needed more
support from them I would have received it. Finally a mention of the developers at
TTE at BorgWarner PDS who were a good source of information regarding what
should be tested on the software loading sequence.

Table of Contents

1. INTRODUCTIONoieeeeeeiiieeenneereeenneeeeneennsseessennssssssennssssessnnssssssennnnnnns 10
1.1 BORGWARNER POWERDRIVE SYSTEMS ...veieuvveeieeeniieenireesreessressssessssessnsneenes 10
1.2 TESTING AT BORGWARNER ...vveevveeiuteesreeeieeeteeesseeessseessseesssessssesssessnsesenes 11

1.2.1 SOftWAIe tESINGvveeeeee e e e ettt e e e e e e s esaaraeaaaeee e 11
1.3 PROBLEM FORMULATION ..veeuvveeereesureesnsesesesessesessseessseessessssessssessssessssessns 12
1.4 RELATED WORK tuteeeutteeteeestreessseessseessessnsesassesessseessssesssessssessnsessssessnsesnnes

1.4.1 Internally developed flashing tool
1.4.2 Adding UDS over CAN to an HIL test system

1.5 OUTLINE OF REPORT cuuttteeeautrteesutteeessreeesssreeessssaeessnsseeessnsseessnseeessnsseeenns 13
2. BACKGROUNDcccuuuiiirirenncrreenannesseennssesseennssesssesnnssssssenssssssasnnsssssseens 15
2.1 COMMUNICATION BUSES IN AUTOMOTIVE APPLICATIONS.....evveeerireeesnireeesnenens 15
2.1.1 Controller Are@ NEtWOIKccoeeueeeeecieeessiieeeesieseseiieeessiieaeenas 16
2.1.2 Controller Area NetWOrk FDcccovecueeessiiieeeesiiseseiieeessiieaennas 18
BB o =3 4 2 1o | U UUP 18
2. 1.4 MOST ANA LINoveeeeeeeeeeeeeeee ettt eeescaaraaaa e 21
2.2 FORMATS OF BINARY DATA .eutiiteenuirieesirteeesureeesssseeesssseeessssseesssnssesessnees
2.2.1 Motorola S-fOrmatccueeeeeeeeeiecciiiieee e eeeccvaveaaa
2.2.2 Versatile Binary Format....
2.2.3 BIN-FOIrMQT ...ttt ettt a e e e saaaaaaa s
2.2.4Intel HEX fOIMQTuveeeeeeeeeeieee ettt e e caraaaa s
2.3 EEPROM AND FLASH MEMORY ..eeeuvtieeeirieeenireeesnsreeesssseeessssseeessssneeesnsees
2.4 INTERNALLY DEVELOPED FLASHING TOOL «.uevveeeeiieeesnereeesireeeesnereeessnaneeesnnneeas 23
2.4.1 Normal process for performing a flash...............cccceeeeveecvvvennnnn... 24
2.4.2 Loading BIN-files with the separate interface................cccccuu..... 24

2.5 CANOE ..ttt 26
26 CAPL...ceiiiee e

2.6.1 CIN and CAN-Files
2.7 ELECTRIC CONTROL UNIT ..eevveniiieenns
2.7.1 ECU QICRItOCTUIE. ...t eeea e seea e
2.8 UNIFIED DIAGNOSTIC SERVICES ISO14229-1.....uiiiiiiieeiiiieeeeiieee et 30
2.8.1 Overview of software loading services specified in UDS 31
2.8.2 General UDS-message CONVENLIONS............ccccceveuveereeeeeeesiirievenannn. 32
2.8.3 UDS-services in the software loading sequences.......................... 37
2.8.4 Standardized software loading sequence.................cccccevvuvunnnn.... 50
2.9 DIAGNOSTIC COMMUNICATION OVER CAN ISO15765-2cevvvvivieeiiieeenen. 52
2. L0 AUTOSAR .ttt e e s e e e et e e e e e e tabe e e s e e aeeeaaaas 53
3. EQUIPMENTciiiiienciererenncerrenansesseennsssesseennsssssesnnssssssenasssssasnnsssssneenn 54
4. IMPLEMENTATION.......coeteeeceirreneeeereeennneeereennsseeesesnnssesssennsssssssnnnssssseens 56
4.1 CONVERTER APPLICATIONeeeturteeesutreeesnuireessureeesnureeessssseeessnseeessnsseeesnnsees 57
4.1.1 Main graphical user interface and BIN-file interface 58
4.1.2 Generic data format for the flashing sequence............................ 59
4.2 DIAGNOSTIC COMMUNICATION INTERFACE «.vveeeruvreeeenureeessueeeessnnreessnneeesnsnnens 61
4.2.1 Modifications to diagnostic communication interface................. 63
4.3 COMMON UDS FLASH SERVICES ..ceeeuvreeeeutreeesrreeesnireeeesssseeessseeesssseeesnsnees 63
4.4 COMMON UDS FLASH SEQUENCE «..uuvveeeeiireeesiteeesnuteeessaneeessnsseessnnneeesnsnens 64
4.4.1 Commonly USEd teSTt CASES........uuuureeeieeeiirerieaeeeesiiiiieeeaaeeeeesiisanens 65
5. EVALUATION.....cttiiiteiiieniiienniiineiiensisieseisasisisssisssssesssssssssssssnsssssssessnns 70
5.1 FLASH TEST CASES c.uvtteeiititeesiteeeeriteeessitteeesnuteeesasseeesssaeeesnsseeessssseeesnnsees

5.2 AUTOMATICALLY GENERATED TEST REPORTS

0. CONCLUSIONS ...ccuiiiieiiteeierennerteeeeensietenserensssessssessssersssssensssssnssessnsesenns 73
5.1 FUTURE WORK w.vveeeieteieietceeeestetestestesteeseestesaestssbesnssnsenseneesesstssneensensaneas 73
7. REFERENCES.......ccittueieirenernnereneenceansencsencsenssnncsasesssesasssnsesnsssnsssnssenssanns 75
APPENDIX ... i ieiiiiiiircictcecetetecetetatastassassastassassassassassssssssssassassnncas 78
TEST DESIGN 1evteveaveieeeeteseestestestesueessessesseseestsessensessessestesseeseesseseesesssesssensensens 78
GENERAL DESIGN ..vvvveeneeeveseeeteeseeseessestessssesesseseeseesssssessssnsessensesesssesnsessensenses 78
SOFTWARE LOADING SEQUENCE — SERVICES: 0X34, 0X36, 0X37vevvvrrerevreerennene 78

TESt CASE AESIGN .eevveeeeeeeeeee ettt e e e e e ettt e e e e e e e s esssaens 79

Test cases on Request Download UDS-requUests.............ccccveeeeeeeceeiunnnns 79
Test cases on Transfer Data UDS-requests..........ccccceeeevvvuveveeeeeeesceiennnns 79
7.1 P2 AND P2 EXTENDED TIMINGS -..etvttteeeeessuiirreeeeeessananteeeeeeeeessaannnseeeeeessannnn

7.1.1 Test cases on P2/P2 extended

Abbreviations

AUTOSAR — AUTomotive Open System Architecture

AWD — All-Wheel Drive

BIN — Binary format

BW-PDS — BorgWarner PowerDrive Systems

CAN - Controller Area Network

CAN-FD — Controller Area Network Flexible Data Rate

CANoe — Controller Area Network open environment

CAPL — CAN Access Programming Language

CIN — File format specific to CAPL for including functions and variables
CSMA/CA — Carrier Sense Multiple Access / Collision Avoidance
DoCAN - Diagnostic communication over Controller Area Network
DolP — Diagnostic communication over Internet Protocol

DTC — Diagnostic Trouble Code

ECU — Electric Control Unit

EEPROM - Electrically Erasable Programmable Read Only Memory
ETC — European Tech Center

FXD — Front Differential Drive

GUI — Graphical User Interface

HEX — Intel hexadecimal file format

HIL — Hardware In Loop

ISO — International Organization for Standardization

1SO14229-1 — UDS: Specification and requirements — road vehicles
LIN — Local Interconnect Network

MOST — Media Oriented Systems Transport

NRC — Negative Response Code

OSI - Open Systems Interconnection

PBL — Primary Boot Loader

RAM — Random Access Memory

SBL — Secondary Boot Loader

SID — Service Identifier

SRE — Motorola S-format

STmin — SeparationTime minimum

TAE — Test Automation Editor

TDMA - Time Division Multiple Access

TTT-SW — Software testing department at BW-PDS

UDS — Unified Diagnostic Services

VBF — Versatile Binary Format

XCP — Universal Measurement and Calibration Protocol

1. Introduction

1.1 BorgWarner PowerDrive Systems

BorgWarner PowerDrive Systems (PDS) is a subsidiary of the American
automotive industry component and parts manufacturer BorgWarner Inc. This
thesis was done at the European Tech Center (ETC) in Landskrona, which
specializes in torque transfer systems. The torque transfer systems developed and
produced at ETC provide BorgWarner’s customers with the ability to deliver on-
demand all-wheel drive (AWD) or cross axle differential drive systems such as
Front Differential Drive (FXD).

T

Figure 1-1: Generation V Eco coupling for providing all-wheel drive to a car [1].

These products provide improved fuel consumption and control compared to
conventional AWD-systems. The Electrical Control Unit (ECU) controls the
clutch, which regulates how and when the torque is applied to the different wheels
of the car to achieve optimal traction when it is needed.

10

Figure 1-2: Front differential drive (FXD) coupling for vehicles as an alternative to a
AWD-system [1].

1.2 Testing at BorgWarner

Before a product is delivered to the customer it has to go through a rigorous
testing process to ensure to the greatest extent possible that problems do not arise
during the life cycle of the product. Because automotive products have to handle
both a long life-cycle and greatly varying operating conditions this requires a lot
of attention and investment from a company like BorgWarner to ensure their
reputation is not tarnished by a failure in any of their products. This thesis was
done at the software-testing department at BW-PDS.

1.2.1 Software testing

The software-testing department at ETC handles the testing process for several
different vehicle manufacturers, which supply consumers with automobiles with
the torque transfer systems from BorgWarner PDS. Because the company supplies
products to several different manufacturers there are great benefits of trying to
have to the greatest extent possible a unified software testing strategy across all
customer projects.

Therefore a lot of emphasis was placed in this project to get a testing process
on the flashing sequence which was to the greatest extent possible unified and
provide the possibility of running the same test cases on several different customer
projects.

11

1.3 Problem formulation

In ongoing customer projects at BW-PDS some requirements specified in the ISO-
standard “Road Vehicle Unified Diagnostic Services” (ISO14229-1, see Chapter
2.8) cannot be tested. Requirements that cannot be tested from their testing
environment regards the software flashing procedure onto the ECU (See Chapter
2.7). Examples of this are: trying to transfer data, which is smaller or larger than
specified, incorrect data and interruptions during different stages of the flashing
procedure.

Today the software loading (flashing) of the ECU is performed by using an
internally developed flashing tool (see Chapter 2.4). This flashing-tool is a
standalone application, which is separate from the current test environment
CANoe (see Chapter 2.5). This tool is also used in the production line; therefore
the tool must be robust and easy to use.

In order to run test cases on the flashing procedure a way to control and
supervise the flashing procedure has to be implemented into the current test
environment. To be able to do the flashing procedure in the test environment a
method to get the flashing data into CANoe has to be developed, as this is not
possible today.

Questions to investigate are:

* How to read binary data into CANoe?

* BW-PDS customers have different formats of binary data, is it
possible to create a generic format for all customers?

* Are there generic requirements and vendor-specific requirements in
1SO14229-1 concerning the software loading sequence?

* s it possible to write generic test cases that can verify the possible
generic requirements identified in ISO14229-1?

1.4 Related work

The requirements on the software loading sequence specified in the UDS-standard
create a need for testing these requirements in order to verify that the delivered
ECU lives up to the specifications set by 1SO14229-1. To accurately test these
requirements a customizable software loading process is required which can
simulate the variations of the software loading sequence, which are permitted in
the UDS-standard. It is therefore likely that similar projects have been developed
previously. One example of a similar solution to the one presented in this report is
discussed in Chapter 1.4.2. At BorgWarner PDS a limited amount of the
requirements have also been tested previously by using an internally developed

12

flashing tool discussed in Chapter 1.4.1. The internally developed flashing does
however not provide the customizability of the flashing process that is needed in
some tests.

1.4.1 Internally developed flashing tool

A tool developed internally at BW-PDS today performs the software loading. This
tool is able to execute the vendor-specific software loading process for all BW-
PDS customers. In order to support several vendors the flashing tool contains a
number of functions for the conversion of vendor-specific binary data. These
methods could be implemented into the conversion program, which provides the
binary data to a software test environment.

1.4.2 Adding UDS over CAN to an HIL test system

A technical paper written by Matt Rings at National Instruments and Paul Phillips
at Lear Corporation describes a similar problem formulation: “By adding Unified
Diagnostic Services (UDS) over CAN to a Hardware-In-The-Loop (HIL) test
system, Lear was able to increase test automation and provide wider test coverage
by automating the ECU flashing process, adding diagnostic identifiers and trouble
codes to their test scripts, and providing a quick and easy way to exercise ECU
/0. [2]”.

The solution, which was implemented, utilized National Instrument (NI)
tools VeriStand and LabView. The aim of this thesis is to provide the possibility
of using ECU-testing specific tools from Vector Informatik GmbH such as
CANoe, Test Automation Editor (TAE) and VTestStudio to run test cases on the
ECU-flashing procedure. The main reason for using CANoe is that it is the
software test environment, which is currently used at the software-testing
department at BW-PDS. Another advantage with CANoe is the possibility to write
module-based code so that large parts of the functionality can be platform
independent. In theory the only platform specific module needed would be the
actual transmission of the data.

1.5 Outline of report

Chapter 2 in this report aims to cover the fundamental background needed to
understand how the implementation of this project is carried out and provide
context of how the UDS-standard is formulated to perform a software loading
sequence. In Chapter 3 the equipment needed to implement this project is briefly
discussed. Then Chapter 4 covers the implementation of getting the binary data

13

into CANoe, performing vendor-specific software loading sequence and finally
the structure of the flash tests, which were run in this project. Chapter 5 handles
the final results from this project, how results are presented to the test engineer
utilizing this project for flash testing. Chapter 6 discusses what has been learned
from this project, what could be possible future improvements and work.

14

2. Background

This chapter aims to cover the background needed to add context and
understanding of how this project was developed. First the communication buses
in automotive applications are discussed in Chapter 2.1, which are the currently
used communication buses and how this might change in the future. Then the
formats, which are used for transporting the binary data by BW-PDS’s customers
for the software loading process, are presented in Chapter 2.2. The non-volatile
memory types are briefly discussed in Chapter 2.3, which are typically used in
standard ECU:s to store the software for controlling the coupling in the torque
transfer system. The process of performing a flashing sequence with the internally
developed flashing tool is discussed in Chapter 2.4. A large part of this chapter is
dedicated to discussing the ISO-standard Unified Diagnostic Services in Chapter
2.8 to give context to the implementation and analysis of the automatic test cases
that were implemented in this project. Other topics which are discussed in this
chapter include ECU:s, the software tools from Vector Informatik GmbH that
made this project possible and the AUTOSAR initiative to promote
standardization in the automotive field.

2.1 Communication buses in automotive
applications

Communication networks in automotive applications have special requirements,
which have to be fulfilled: they have to be able to operate in harsh operating
environments, resistant to external disturbances, cost efficient and provide reliable
and robust communication, which satisfies real-time communication requirements
in vehicles. In order to fulfill these requirements dedicated fieldbuses are used in
automotive applications.

In recent years the communication networks in the automotive sector have
grown larger as more and more mechanical systems in cars are being replaced by

15

electronic systems. This development is likely to continue, as there are
considerable benefits of being able to control the different components in cars
more precisely. Examples of the improvement, which can be achieved, are
reducing exhaust emissions and provide more features to consumers in order to
compete in a global market.

The dominating communication protocol used in automotive is CAN or
Controller Area Network. The main reasons for this are its cost effectiveness and
because it is a tried and tested communication protocol, which was first introduced
in 1980:s. However, as the amount of data increases and new features that require
deterministic behavior such as driver assistance features, there is a growing need
for new communication protocols.

Examples of new communications protocols are FlexRay, MOST and LIN
each with their own advantages and disadvantages. A modern automobile will
typically use several of these communication standards in order to balance
performance and cost.

There is also a new version of CAN being developed by Bosch, which is
called CAN FD. CAN FD seeks to address the problem of low bandwidth
associated with the CAN-bus [3] [4].

2.1.1 Controller Area Network

Bosch developed Controller Area Network or CAN in 1980:s for fast serial data
communication in automotive applications. Decades later it is still the dominating
communications network used in cars. The CAN-bus has been able to remain the
primary standard used in vehicles even as the amount of data transmitted has
increased. This is because of the fact that vehicle manufacturers could simply add
additional CAN-networks, rather than increasing the bandwidth on a single
network. The main properties that were included in the CAN-bus in the 1980:s
continue to be as relevant today: resistance to external disturbances in an
automotive environment and important real-time characteristics.

Network topology of a CAN-network

The network topology of a CAN-network is depicted in Figure 2-1. All CAN-
nodes on a CAN-network have permission to access the CAN-bus at any time
(Multi-master bus). Each node has its own controller and transceiver, which
enables the multi-master decentralized structure of the CAN-bus. Two important
CAN-protocol features, which enable the important real-time characteristics of the
CAN-bus, are CSMA/CA and an arbitration scheme discussed on the next page.

16

CAN Interface

CAN Nod
CAN Node ode CAN Controller
: |
CAN Transceiver
CAN Bus
CAN Node CAN Node

Figure 2-1: Example of the CAN-network topology, each CAN-node in the network
has their own controller and transceiver. Each node has permission to access the
CAN-bus without earlier coordination with the other CAN-nodes on the bus. Figure
from [5, p. 2].

CSMA/CA and Arbitration Scheme

CAN is an event driven communications protocol, which enables quick
reaction time to events. In order to maintain reliable real-time behavior, even
when there are multiple CAN-nodes operating on the same bus, two important
techniques for bus access are used: firstly Carrier Sense Multiple Access /
Collision Avoidance or CSMA/CA and secondly an arbitration scheme.

When a CAN-node has a message to send it first checks if there is another
node already communicating on the bus. If there is no ongoing communication the
node sends its message on to the bus. If the CAN-bus is occupied then the node
waits a specified amount of time before checking again if the CAN-bus is
available. If there is a collision in spite of the CSMA/CA-technique then the
arbitration scheme is used to prioritize the most important message on the bus. An
example of this arbitration scheme is shown in Figure 2-2.

17

D10 9 I8 ID7 ID6 ID5 ID4 I3 ID2 101 IDO
SenderA [1 | 1 | o 0o | 1 [o] o 1] 1] o] o]

A A A

cnus [1 [1 [oo [t oot 1o o]

v
CAN node C loses arbitration
Sender C il il 0
| I I I 4 -> Stops sending and transitions to Rx state.

ID10 ID9 ID8 ID7
Figure 2-2: Arbitration scheme used in CAN-communication. When multiple nodes
are sending messages on the CAN-bus simultaneously the message with the highest
priority(0 - high priority, 1 - low priority) will continue sending its message, whereas
the lower priority message will stop transmitting. In this example sender A has the
higher priority message and therefore retains access of the CAN-bus. Figure from [5,
p. 3l.

2.1.2 Controller Area Network FD

The main limitation of the traditional CAN-network is the restricted bandwidth,
which is a maximum of 1 Mbit/s on a 40 meter CAN-bus. CAN-Flexible Data-
Rate (CAN-FD) is a new standard developed by Bosch aiming to increase the
bandwidth of the CAN-bus while retaining the core characteristics of the
traditional CAN-bus. The bandwidth restriction in CAN arises due to the
arbitration scheme illustrated in Figure 2-2, which is used in the CAN-standard.
On a CAN-bus multiple nodes are allowed to transmit at the same time
before the higher priority message wins the arbitration as the sender A in Figure
2-2 does at ID 7. In order for the arbitration scheme to work for all communication
on the bus, the signals from a node must be able to propagate through the entire
length of the CAN-bus and back again. In order to ensure corresponding bits are
compared in the arbitration scheme, even for the nodes, which are furthest away
from each other. However once the higher priority node gains access to the CAN-
bus only one node will be transmitting data. By utilizing this characteristic of the
CAN-bus it is possible to transmit data at a higher rate once there is only one node
transmitting on the bus. This is the main idea behind the new CAN FD standard

[3115].
2.1.3 FlexRay

FlexRay is a relatively new communications bus, which is expected to replace the
CAN-bus for high-end applications in future automobiles. The main advantages of
the FlexRay-bus over the CAN-bus are higher bandwidth and support for

18

deterministic communication. A consortium of automobile- and semiconductor
manufacturers developed FlexRay that became an ISO-standard in 2010.

Network topology of a FlexRay-network

The FlexRay standard adds flexibility to the design process of the network
topology compared to the CAN-standard. In addition to supporting multi-drop bus
topology, which is used in a CAN-network, the FlexRay-protocol also supports a
star network topology. In a star network topology there is a central node which
handles the communication between the different ECU:s.

- -~ - A
-
- arki
|
P ' P ——
At —

Figure 2-3: Star network topology, a central node handles the communication, similar
to a switch or router in a PC Ethernet network. Figure from National Instruments [4,

p-2].

The network topologies can also be mixed in order to create an optimized
network in which the advantages and disadvantages of the two network topologies
are utilized.

Communication cycle and time division multiple access

A FlexRay network can accommodate both efficient data transfer and
deterministic behavior when required. The FlexRay standard manages
communication on a single bus with multiple nodes by using a Time Division
Multiple Access (TDMA) scheme. ECU:s have a predetermined timeslot where
they are permitted to transfer data in a communication cycle. The communication
cycle in the FlexRay protocol is divided into different parts, there are static and
dynamic segments. There is also a symbol window and idle timeslot. The structure
of a communication cycle can be seen in Figure 2-4.

19

T B R

Figure 2-4: Communication cycle for a FlexRay network. The communication cycle
contains different parts: a static segment (blue), a dynamic segment (yellow), a symbol
window (green) and an included idle time (white). Figure from National Instruments
[4, p. 3]

In a static segment a timeslot is reserved for one ECU, in which only the
specified ECU may transmit data as seen in Figure 2-4 where ECU #1 and #3 have
one determined timeslot in the static segment (blue) and ECU #2 has access to 2
timeslots to transmit data. The static ensures deterministic communication, which
is important in various applications. It is for example important when calculating
control loops where equally spaced measurements are advantageous.

In the dynamic segment the communication is divided into micro-slots where
each ECU has the ability to signal that it has data to transmit to the network. The
ECU:s with the highest priority will have a micro-slot earlier in the dynamic
segment in order to ensure that the ECU:s, which have higher priority will get
access to the FlexRay bus before lower priority ECU:s. Once an ECU has received
permission to send it will occupy the bus. The dynamic segment in the FlexRay
bus has similar real-time characteristics to the communication in a CAN-network.
The mix of static and dynamic segments makes it possible to achieve real
deterministic behavior and at the same time not sacrificing the performance of the
network by permitting all ECU:s to occupy a timeslot in the dynamic segment
when the ECU has data to send.

The symbol window is mainly used when performing a startup of a FlexRay
network and the idle timeslot is used to synchronize all ECU-nodes to the
communication cycle so that all nodes will communicate at the correct timeslot in
the communication cycle [4] [6].

20

2.1.4 MOST and LIN

Local Interconnect Network or LIN was developed to support applications where
the features of the CAN-bus were unnecessary and therefore more expensive than
what they had to be. The LIN standard is today used in applications where the
relatively high data transfer rate and robust characteristics of the CAN-bus are not
required. Examples of these applications are seat, door and mirror control as well
as climate control in the vehicle.

Media Oriented Systems Transport or MOST is another communications
standard used in automotive applications. It is optimized for multimedia and
infotainment applications that require high data transfer rates [7] [8].

2.2 Formats of binary data

The binary data for the software loading sequence is supplied by the different
vehicle manufacturers to BW-PDS. The main formats used by BW-PDS
customers are Versatile Binary Format (VBF), Motorola S-format (SRE) and
binary format (BIN). Another format that is commonly used delivering binary data
is the Intel HEX format.

2.2.1 Motorola S-format

The binary data contained in the SRE-format is represented according to the
Motorola S-format. Motorola created the Motorola S-format for the Motorola
6800-series 8-bit microprocessors in the 1970:s. The main benefit of the S-format
is that it provides a way to transport data in a way, which can be visually
inspected.

The S-format file contains several lines of S-records, each S-record contains
five data fields: record type, byte count, address, binary data and checksum. In
Figure 2-5 a typical S-format file is depicted. The SO-record is the header record
for all S-format files and the S7-record is a termination record for a S-format file
with S3 data records. The S3-record contains 4 address field bytes. The address
field of the first S3 data record is used in the internally developed tool (see
Chapter 2.4) to identify which file block is being read. There are a few different
record types specified in the Motorola S-format standard with varying address
field size. The byte count is denoted in hexadecimal, in this case the S3-record is
37 bytes long (25 in hex), included in this number the address field therefore there
are 33 data bytes in this record (37 bytes in total — 4 address field bytes = 33 data
bytes in total) [9] [10] .

21

50140000
$32500C0B400
$32500COXXXX
$32500COXXXX
$32500COXXXX
$7140000

Figure 2-5: A typical Motorola S-format file used to deliver the binary data to the
software loading process. There are three S-records primarily used in the S-format
files from BW-PDS customers. A header record S0, a data record S3 with 4 bytes
address information and a termination record S7.

2.2.2 Versatile Binary Format

The Versatile Binary Format or VBF is a format used by Volvo Car Corporation
and its collaborating partners [11]. The file format contains a header that contains
useful information for the software loading sequence in addition to the binary
data.

2.2.3 BIN-format

In the BIN-format there is only the binary data without a structure, therefore it is
not possible to easily visually inspect the data as can be done with the Motorola S-
format or Intel HEX. Furthermore, the format does not contain all information
needed in the software loading sequence (see Chapter 2.4.2 how this is solved in
the internally developed flashing tool).

2.2.4 Intel HEX format

A binary file format that is frequently used when programming or flashing
microcontrollers is the Intel HEX format. In many ways it is similar to the
Motorola S-format. Containing the same kind of fields as the S-format: Fields for
record type, byte count, address field, binary data and a checksum for each record.

22

A standard Intel HEX file format is depicted in Figure 2-6. |
:10C00000576F77212044696420796F7520726561
:10C010006C6C7920676F207468726F7567682061
:10C020006C6C20746869732074726F75626C6520
:10C03000746F2072656164207468697320737472
:04C040007696E673

: 00000001

Figure 2-6: A standard Intel HEX format binary data file. All records start with a
colon ":", byte count (Red), address field (Blue), record type (Black), binary data
(Green) and a checksum (Yellow) on each record. Figure from SB-Projects [12].

The record types most frequently used are “00” which is a standard data
record and “01” which is an end of file record [12].

2.3 EEPROM and flash memory

Electrically Erasable Programmable Read-Only Memory or EEPROM is a non-
volatile memory, which is used in some hardware implementations of ECU:s (see
Chapter 2.7). A special feature of the EEPROM-memory is that it typically allows
modification of individual byte values whereas other non-volatile memory types
typically only allow modifications of entire byte blocks. One example of a non-
volatile memory where only entire byte blocks may be modified is flash memory,
which is a memory type which has become increasingly popular as prices and
performance of the flash memory have significantly improved in the last years.
Flash memory was originally developed from EEPROM and is today extensively
used in solid-state drives (SSD), memory cards and USB-sticks [13] [14].

2.4 Internally developed flashing tool

The software loading to ECU:s at BW-PDS is done by an internally developed
tool. The tool has two Graphical User Interfaces (GUIL:s) to support all the
different projects at BW-PDS. The main GUI can be seen in Figure 2-7. The
separate user interface for loading BIN-files can be seen in Figure 2-8.

23

2.4.1 Normal process for performing a flash

The normal process for using the tool is that the user chooses the project, which is
going to be flashed under the dropdown menu “Flasher”, then adds the files
needed for the flashing sequence with the “Add file to list” button. Finally the
software loading sequence is started by pressing the “Download” button. There is
a progress bar tracking the flashing process and any error during the process is
printed out to the small white box just above the “Download” button. There is also
a “radio button” for choosing which CAN-channel (Channel 1 or 2) the tool
should send the required UDS-messages (see Chapter 2.8) for the flashing
sequence.

There is an option to save the current configuration in a file, which can be
opened the next time a flashing has to be performed; thereby the user only has to
configure the flashing process when there is a new software release.

2.4.2 Loading BIN-files with the separate interface

As the BIN-files do not contain an identifier in the binary data it is not possible to
separate the file blocks from each other based on the data contained in the file.
Therefore a separate interface is needed for the projects that have their binary data
delivered in BIN-files. The user adds the binary data files to each row with the
corresponding block number (Block NR) in order to add an identifier to each file
block. A separate signature file containing checksums for each block is loaded
automatically if it is available in the same folder. When the user is finished with
the binary file inputs the user presses the “save and return” button returning to the
main graphical user interface.

24

File Flasher
‘d =

l

Help

Add file to list | Clear File List | Remove | Move up Move down

% Channel 1
Download
| " Channel 2

Figure 2-7: The main graphical user interface (GUI) for the internally developed
flashing tool. The user adds the binary data files for the flashing.

a2 Bin Files SetUp
Block NR .

Type (Hex) = ‘ Signature File

Driver 30

| Application 1 v |50

| Application 2 v |51

Data 1 v |60

Data 2 |8

Open File Add bin File Delete Row Add Signature File

Save and Retum Close

Figure 2-8: The separate user interface for loading BIN-files. The user adds the binary
data files to each row with the corresponding block identifier (Block NR). A signature
file is loaded automatically if it is available in the same folder.

25

2.5 CANoe

CANoe is a software testing tool developed by Vector Informatik GmbH, which
can be used for development, testing and analysis of individual ECU:s or entire
networks of ECU:s.

It provides the possibility to simulate how the ECU network would behave in
an actual car so that the functions of the ECU can be tested in a simulation of the
environment in which it will later be used. This makes it possible to test ECU:s in
a realistic environment without having an actual car present in the testing process
[15].

2.6 CAPL

CAN Access Programming Language or CAPL is the programming language used
in the Vector-based programs CANoe and CANalyzer. CAPL is based on the C-
programming language but adds features to support CAN-based embedded
systems development.

CAPL is an event driven programming language. CAPL applications can be
developed to respond to different system events such as key press, software
timers, CAN-messages, and then executing a routine in an interrupt-like manner.

There are several built in functions in CAPL for diagnostic communication
that will be extensively used in this project for the UDS-communication between
the test environment and the ECU during the software loading process.

There are two different file formats supported by CAPL: CIN- and CAN-files
[16].

2.6.1 CIN and CAN-files

A CIN-file is a non-executable format used in CAPL, which can include functions,
constants and variables. Functions and variables that can be used in several
different applications are typically stored in CIN-files. This enables reuse of
commonly used variables and functions. The CIN-files are included in a CAN-file,
which will then gain access to the functions and variables included in the CIN-
files. A simple example of this is shown in Figure 2-9, which depicts a simple
CIN-file. Figure 2-10 and Figure 2-11 depict two independent CAN-files which
both utilize the variable included in the CIN-file.

26

File Simparameter.CIN ::

variables
{

int SimPar Granularity ms = 10;
}

Figure 2-9: A simple CIN-file, which includes a variable “_SimPar_Granularity_ms”.
Example file from Vector Informatik GmBh, Stuttgart, Germany [17].

File Door Left.CAN ::
includes
{

#include "Simparameter.CIN"
}

variables
{

msTimer cyclicTimer;
}

on start
{

setTimer (cyclicTimer, _SimPar Granularity ms);
3}

on Timer cyclicTimer
{

setTimer (cyclicTimer, _SimPar Granularity ms):;

}

Figure 2-10: A simple CAN-file, which includes the CIN-file "Simparameters.CIN" in
Figure 2-9. It is then able to use the variable included in the CIN-file. Example file
from Vector Informatik GmBh, Stuttgart, Germany [17].

27

File Radio.CAN ::
includes
{
#include "Simparameter.CIN"
}

variables
{

msTimer cyclicTimer;
}

on start
{

setTimer (cyclicTimer, SimPar Granularity ms);
}

on Timer cyclicTimer
{

setTimer (cyclicTimer, _SimPar Granularity ms);
}

Figure 2-11: Another simple CAN-file that includes the CIN-file
"Simparameters.CIN" in Figure 9. It is then able to use the variable included in the
CIN-file. Example file from Vector Informatik GmBh, Stuttgart, Germany [17].

2.7 Electric Control Unit

An Electric Control Unit or ECU is an embedded computer system, which
controls parts of the electrical system in a motor vehicle. By gathering and
processing information from several sensors (for example temperature sensors,
accelerometers and gyroscopes) placed in different parts of the vehicle it can
control various automated processes in the vehicle. ECU:s are also used to check
performance of key components in the car and to monitor changes over time [18].

2.7.1 ECU architecture

A reprogrammable ECU has to have a hardware and software architecture, which
supports the software loading process. An ECU, which is reprogrammable after it
leaves the manufacturing plant, has the benefit that fixes and new features can be
added later during the lifetime of the vehicle. There are also downsides to having a
reprogrammable ECU: by enabling more people to alter the software on the ECU,
some control of how the software loading is done is lost. Because of this the ECU
must implement a structure, which prevents the software on the ECU from
becoming unusable. In order prevent the ECU from becoming unusable there is
usually a protected flash memory or EEPROM sector (see Chapter 2.3) where a

28

primary bootloader or PBL is placed. The primary bootloader should theoretically
be impossible to remove without special access, and should not be altered during a
normal software loading sequence, see memory structure of a typical
reprogrammable ECU in Figure 2-12 [11].

ECU

Figure 2-12: Memory structure of a typical programmable ECU. The flash memory or
EEPROM contains a protected sector where the primary bootloader (PBL) is stored.
Figure by V. Bordyk [11, p. 5].

When the ECU is powered up the primary bootloader will the first code that
will be run. The primary bootloader will then start the application on the ECU if
there is a valid application installed (see Figure 2-13). The principle of using a
bootloader is ubiquitous in computer systems, for example in a normal desktop PC
a bootloader will be run before the operating system is loaded.

ECU

Figure 2-13: When the ECU is powered up the primary bootloader (PBL) is run first,
the PBL will then start the application if there is a valid application loaded. Figure by
V. Bordyk [11, p. 6].

29

In all software loading processes at BW-PDS the ECU:s use a secondary
bootloader (SBL) to write new application and parameter data files. The PBL
supports the downloading of the SBL to RAM, then the SBL will control the
writing and erasing of flash- or EEPROM memory (see Chapter 2.3) for
application and parameter data files. Because the SBL is placed in RAM, which is
a volatile memory type, it will not be available after the ECU has been reset or
turned off.

ECU

load SBL
Flash memory

Erase/download

Figure 2-14: The secondary bootloader (SBL) is downloaded to the RAM by the
primary bootloader (PBL). The SBL will then support the software loading of the
application and parameter files. Figure by V.Bordyk [11, p. 6].

2.8 Unified Diagnostic Services 1SO14229-1

The ISO-standard UDS defines how diagnostics communication should be
handled between a diagnostic tester (client) and an on-vehicle ECU (server). The
UDS-standard requires that several diagnostic control functions should be
available independent of data link.

There are general message conventions in the UDS-standard; the most
important ones for this project are discussed in Chapter 2.8.2.

During the software loading (flashing) of the ECU several of the diagnostic
services described in UDS are used. The most important services utilized in the
flashing of the ECU are listed in Table 2-1 and explained more in detail how they
are used in the flashing sequence in Chapter 2.8.3. Then the steps of a standard
UDS software loading sequence are discussed in Chapter 2.8.4. This entire chapter
contains information gathered from the ISO14229-1 standard and aims to present
the information, which is important for a standard software loading sequence and
test cases on this sequence [19].

30

2.8.1 Overview of software loading services specified
in UDS

Downloading new software to an ECU is generally done in a similar way
independent of which vehicle manufacturer specific sequence is used. The UDS-
services that are frequently used in the software loading sequence are listed in
Table 2-1:

Table 2-1: Important software loading services specified in UDS

Identifier | Sub-function/data-parameter#1 Description of services used in software
Byte Byte #2 loading.
(SID) #1
0x10 DiagnosticSessionControl Enables selection of different sessions.
The most important sessions are:
(0x01) defaultSession defaultSession, programmingSession and
(0x02) programmingSession . . .
(0x03) extendedDiagnosticSession extendedDiagnosticSession. Some
(0x04) safetySystemDiagnosticSession vehicle manufacturers have specific
(0x40-0x5F) vehicleManufacturerSpecific sessions (0x40-0x5F).
0x11 EcuReset Hard Reset simulates a start-up sequence
after an ECU has been disconnected
(0x01) hardReset from its power supply (i.e. battery).
0x27 SecurityAccess All reprogrammable ECU:s should
restrict access from unapproved tools.
(0x01)/ (0x00-FF) requestSeed This service is used to unlock ECU
(0x02)/ (0x00-FF) sendKey) .
before downloading and uploading of
data.
0x85 ControlDTCSetting Used to stop or resume updating of
(0x01) On Diagnostic Trouble Code (DTC) status
(0x02) Off bits on the ECU.
0x28 CommunicationControl Service used to control transmission of
normal communication. For example:
Byte #2: disable or enable transmission of all non-
Egig?; Ezzg:ggiﬁzggTsableTx. diagnostic communication on an ECU.
(0x03) DisableRxAndTx
Byte#3: (0x01) NormalCommunication
0x22 ReadDataByldentifier Service to read data at location specified

(0x00-FF) dataldentifier
(Can be specified in several bytes)

by dataldentifier. For example reading
ECU assembly number, serial number
and software identification number.

31

0x2E WriteDataByldentifier Service to write data at location specified
by dataldentifier. For example writing
(0x00-FF) dataldentifier ECU assembly number, serial number
(Can be specified in several bytes) and software identification number.
0x31 RoutineControl Service to execute a defined sequence of
steps. Flexible service which is for
Byte #2: example used to start download to RAM,
(0x01) startRoutine, erasing flash memory and for calculating
(0x02) stopRoutine. . . .
(0x03) requestRoutineResults checksums. routineldentifier ~specifies
routine.
Byte #3&4: (0x00-FF) routineldentifier
0x34 RequestDownload Used to initiate a data transfer from the
tester to the ECU. dataFormatldentifier is
Byte #2: (0x00-FF) dataFormatldentifier used to specify if data is compressed
Byte #3: (0x00-FF) . and/or encrypted.
addressAndLengthFormatldentifier
0x36 TransferData Service to transfer data from tester to
(0x00-FF) blockSequenceCounter ECU. blockSequenceCounter is included
to allow for error handling if an error
occurs during sending of multiple
Transfer Data requests.
0x37 RequestTransferExit Used to terminate data transfer between
tester and ECU.
0x3E TesterPresent This service is used to inform the ECU

that a tester is still present and therefore
should remain in current session.

2.8.2 General UDS-message conventions

There are general service description conventions in the UDS-standard of how a
request, positive- and negative responses should be formulated. A standard request
is structured according to Figure 2-15. Each UDS-service has its own request
identifier or request service identifier (SID, see Table 2-1). Byte #2 will specify
either a sub-function of the UDS-service or the first data parameter in the request.

32

Figure 2-15: The structure of UDS-request message is defined in the UDS-standard,
byte #1 is the request SID, byte #2 can be a sub-function of the UDS-service or the
first data parameter. The rest of the bytes are data parameters.

The general format for a standard UDS-response is structured in a similar
way to the request message as can be seen in Figure 2-16. A negative UDS-
response will have a response SID that has byte value 0x7F on byte #1 as in
Figure 2-17. Byte #2 will contain the request SID and a response code is included
on byte #3.

Figure 2-16: The structure of a UDS-response message is defined in the UDS-
standard, byte #1 is the request SID, the rest of the bytes are data parameters.

33

Figure 2-17: A negative UDS-response will have a response SID 0x7F, byte #2 will
contain the request SID and byte #3 will contain a response code which contains
information why the request was not accepted by the ECU.

A positive UDS-response will respond to a UDS-response with a positive
response SID which is defined to be the request SID + 0x40 as in Figure 2-18. If
the UDS-request contained a sub-function request then byte #2 will contain that
byte value else it will contain the first data parameter, the rest of the bytes are data
parameters.

Figure 2-18: A positive UDS-response will have a positive response SID which is the
request SID + 0x40. Byte #2 can be sub-function of the UDS-service or the first data
parameter. The rest of the bytes are data parameters.

Suppress positive UDS-response

There is a possibility for the diagnostic tester (client) to suppress positive
responses from an UDS-request, which informs the ECU not to send a positive
UDS-response. A suppress positive response request is done by setting bit #7 to 1
in the byte value representation of the sub-function. The bit value representation
of a suppress positive response with sub-function 0x01 is illustrated in Figure
2-19.

34

Sub-function Byte Value = 0x81

Bit # 6 5 4 3 2 1 0

Figure 2-19: Bit value representation of a sub-function in an UDS-request. Bit #7 is set
to 1 to indicate that it is a suppress positive response UDS-request.

The corresponding diagnostic session control request without suppress
positive response can be seen in Figure 2-20. |

Sub-function Byte Value = 0x01

Bit # 6 5 4 3 2 1 0

Figure 2-20: Bit value representation the SID of a sub-function in an UDS-request.

Physical and functional addressing

There is a possibility for the diagnostic tester (client) to send physical or
functional UDS-requests. A functional request is a broadcast-type message which
will be sent to all ECU:s which are on the CAN-network. Physical UDS-requests
are only sent to a single ECU on the network.

General negative response codes

When the ECU sends a negative UDS-response to the diagnostic tester (client) the
response must include a response code on byte #3 as seen in Figure 2-17. There |
are some general negative response codes or NRC:s which are defined in the
UDS-standard in addition to the UDS-service specific NRC:s. The NRC:s are
divided into two different byte value ranges depending on the type of errors:

* 0x01-0x7F — Communication related NRC:s.
* 0x80-0xFF — NRC:s which are sent for specific conditions which are
not correct at the time when the request is received by the server.

There are some general NRC:s related to issues that can occur during a
software loading sequence. These are listed in Table 2-2. This project has mainly
focused on the communication related NRC:s. But there are other tests which can
be performed to generate NRC:s in the range 0x80 to OxFF related to for example

35

incorrect vehicle speed, i.e. the car is moving during flashing of the software

which is not a good idea.

Table 2-2: Communication related NRC:s commonly used in the UDS-services which
are used in the software loading sequence

Byte Value | Negative Response Code (NRC) Definition
0x10 General Reject
0x11 Service Not Supported
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x24 Request Sequence Error
0x31 Request Out Of Range
0x33 Security Access Denied
0x72 General Programming Failure
0x78 Request Correctly Received - Response Pending

36

General Reject (0x10): Should only be used if none of the NRC:s
defined in the UDS-standard meet the requirements of the
implementation.

Service Not Supported (0x11): Should be sent when the ECU receives a
UDS-service request with an SID which is unknown or not supported.
Sub-function Not Supported (0x12): Should be sent when the ECU
receives a UDS-service request with an sub-function which is unknown
or not supported.

Incorrect Message Length Or Invalid Format (0x13): Should be sent
when the length or format of the received request message does not
match what is specified by service.

Conditions Not Correct (0x22): Should be sent when the prerequisite
conditions are not correct.

Request Sequence Error (0x24): Should be sent when the ECU
expected a different sequence of messages than what was sent by the
tester.

Request Out Of Range (0x31): Should be sent when the tester requests
modifying a value which it does not have authority to change.

Security Access Denied (0x33): Should be sent when the security
requirements of the ECU are not fulfilled for the current request.

General Programming Failure (0x72): Should be sent when the ECU
has noticed an error while programming or erasing memory.

* Request Correctly Received - Response Pending (0x78): Should be
sent when the request is correctly formulated but the server has not yet
completed the required actions. This NRC is supported in all UDS-
services.

Session layer timings in the UDS-standard

Contained within the UDS-standard there is a standard governing the session layer
services in the Open Systems Interconnection (OSI)-model called 1SO14229-2.
The most important session layer timings in this project are the P2 and P2
extended timings that specify the maximum time the server (ECU) or client
(tester) has to wait or respond to an UDS-request. These values are communicated
by the ECU through the UDS-response to the Diagnostic Session Control service,
which is discussed in Chapter 2.8.3. P2 specifies the default timing which should
be used, the ECU has however the option to send a NRC 0x78 (see Table 2-2)
then the P2 extended timing value will be maximum time, which the server (ECU)
has to respond.

2.8.3 UDS-services in the software loading sequences

Diagnostic Session Control

The UDS-service Diagnostic Session Control is used to control which diagnostic
session the ECU should be in. There are a few different sessions, which are used
for different purposes. The sessions, which are specified in the UDS-standard, are
default-, programming-, extended- and safety system diagnostic session. On
startup the ECU should be in the default session, then by using the diagnostic
session control service the tester (client) may send UDS-requests to change the
diagnostic session. An example of a diagnostic session control UDS-request can
be seen in Figure 2-21.

Byte# 1 2 3 4 5 6 7 8
Value 0x10 | 0x02 - - - - - -
Figure 2-21: A standard Diagnostic Session Control UDS-request to enter

programming session. The request SID 0x10 on byte #1 and sub-function 0x02 on byte
#2 according to the general message conventions.

The ECU will response to this message with either a positive or negative
response if it is operational. A positive diagnostic session control service response
will contain P2 and P2 extended timing values. These values represent the
maximum time the ECU should take to return a response to a UDS-request in the

37

current session. The first value P2 is specified on bytes #3 and #4, P2 is the timing
value used if the ECU has not sent a NRC 0x78 (see Table 2-2). P2 extended
specified on byte #5 and #6 is the timing value in effect when the negative
response code 0x78 has been sent by the ECU. The P2 and P2 extended values in
Figure 2-22 are: P2 is equal to 10 ms and P2 extended is 500%10 ms = 5000 ms as
the P2 extended value is specified in 10 ms resolution.

Byte# 1 2 3 4 5 6 7 8
Value | Ox50 | 0x02 | Ox00 | OxOA @ 0x01 | OxF4 - -

Figure 2-22: A standard positive Diagnostic Session Control UDS-response. It will
return the response SID on byte #1 and the sub-function on byte #2 according to the
general message conventions. In addition a positive Diagnostic Session Control service
response will contain P2 and P2 extended timing values on bytes #3-6.

The negative response codes supported by the diagnostic session control are
shown in Table 2-3.

Table 2-3: Negative response codes supported by the Diagnostic Session Control
service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct

ECU Reset service

The UDS-service ECU Reset is used to perform a reset of the ECU. This service is
usually used in post-programming (see Chapter 2.8.4) after a reprogramming of an
ECU. There are several sub-functions defined in the UDS-standard but only the
sub-function “Hard Reset” is used in the software loading sequences used by BW-
PDS customers (see Figure 2-23). After a ECU Reset has been performed the ECU
should enter the default session.

Byte# 1 2 3 4 5 6 7 8
Value | Ox11 0x01 - - - - - -

Figure 2-23: A standard ECU Reset UDS-request with sub-function Hard Reset.

The negative response codes supported by the ECU Reset service are listed in
Table 2-4.

38

Table 2-4: Negative response codes supported by the ECU Reset service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x33 Security Access Denied

Security Access service

In order to prevent unauthorized access to the ECU the vehicle manufacturers
implement the Security Access service, which is specified in the UDS-standard.
Generally security access is required before any transfer of new software to the
ECU can be performed. The Security Access service utilizes a seed and key
structure; the tester (client) will request security access with a UDS-request (see
Figure 2-24).

Byte# 1 2 3 4 5 6 7 8
Value | 0x27 | 0x01 - = - - - _

Figure 2-24: Example of a request seed Security Access UDS-request.

The ECU will then respond with a positive response, which contains what is
called a security seed, the length of the seed is vehicle manufacturer specific but is
typically 3-4 bytes long (see Figure 2-25).

Byte# 1 2 3 4 5 6 7 8
Value | Ox67 | 0x01 | OxC6 | OxF8 @ 0x98 | 0x69 - -

Figure 2-25: Example of a Security Access UDS-response containing the security seed.

The security seed will then be used in a vehicle manufacture specific
algorithm, which will return a security, key that the tester (client) will send in an
UDS-request (see Figure 2-26).

Byte# 1 2 3 4 5 6 7 8
Value | 0x27 | 0x02 | OxBF | OxFC @ OxE7 | OxC3 - -

Figure 2-26: Example of a send key Security Access UDS-request containing the
calculated security key.

If the security key returned by the tester (client) is correct the ECU will
respond with a positive UDS-response (see Figure 2-27). After this the tester will
be granted security access at the requested security level. The vehicle

39

manufacturers have the option of adding different security levels to differentiate
what level of access is given to the user of the security access. Different levels of
security access can be implemented by using different sub-function byte values to
symbolize different levels of security. The relation between the request seed
request and send key request is fixed so that if the request seed byte value is 0x01
then the send key byte value will be 0x02. If the request seed byte value is 0x03
then the send key byte value will be 0x04.

Byte# 1 2 3 4 5 6 7 8
Value | Ox67 | 0x02 - = - - - _

Figure 2-27: Example of a positive Security Access UDS-response granting security
access to the tester (client).

The general negative response codes supported by the Security Access
service are listed in Table 2-5 and the Security Access specific NRC:s are listed in
Table 2-6.

Table 2-5: General negative response codes supported by the Security Access service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x24 Request Sequence Error
0x31 Request Out Of Range

Table 2-6: Negative response codes specific to Security Access service in the software
loading sequence

Byte Value | Negative Response Code (NRC) Definition
0x35 Invalid Key
0x36 Exceeded Number Of Attempts
0x37 Required Time Delay Not Expired

* Invalid Key (0x35): Sent if the security key sent by the tester
(client) does not match the expected key value.

* Exceeded Number Of Attempts (0x36): Sent if a delay timer is
active due to too many incorrect send key Security Access requests.

40

* Required Time Delay Not Expired (0x37): Sent if the delay timer
is still active.

Control DTC Setting service

The Control DTC Setting enables the tester to control the updating of the
Diagnostic Trouble Codes (DTC:s) in the ECU:s. DTC:s are used to report
possible faults present in the vehicle to for example a car repair shop and aid the
debugging of problems experienced by the driver. For example a check engine
light indicates that a DTC has been triggered. Generally the Control DTC Setting
is used to disable the updating of DTC:s in the pre-programming step in a software
loading sequence and then re-enabling the updating of DTC:s in post-
programming (see Chapter 2.8.4). A typical Control DTC Setting UDS-request is
shown in Figure 2-28.

Byte# 1 2 3 4 5 6 7 8
Value | Ox85 | Ox01 | OxFF | OxFF | OxFF - - -

Figure 2-28: A typical Control DTC Setting UDS-request. This request contains an
optional control option record on bytes #3-5 which determines which DTC-status bits
should be affected by the request, in this case the request signals that all DTC-status
bits should be enabled.

The negative response codes supported by the ECU Reset service are listed in
Table 2-7.

Table 2-7: Negative response codes supported by the Control DTC Setting service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x31 Request Out Of Range

Communication Control service

This service is used by the tester to control transmission and/or reception of
certain communication messages sent by the ECU:s. It will generally be used in
conjunction with the Control DTC service in pre-programming and post-
programming to disable/re-enable non-diagnostic communication. A typical
Communication Control service UDS-request is shown in Figure 2-29.

41

Byte# 1 2 3 4 5 6 7 8
Value 0x28 | 0x01 | Ox01 - o - - _

Figure 2-29: A typical Communication Control service UDS-request, with sub-
function EnableRxAndDisableTx (0x01) on byte #2 and communication type
normalCommunication (0x01) on byte #3. Used to disable transmission of non-
diagnostic communication.

Table 2-8: Negative response codes supported by the Communication Control service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x31 Request Out Of Range

Read By Identifier service

Service to read data at a memory location specified, used in a flashing sequence to
read programming-, fingerprint-data and prepare the ECU for reprogramming. It is
a vehicle manufacturer specific step that is sometimes included in the pre-
programming part of the software loading sequence (see Chapter 2.8.4).

Byte# 1 2 3 4 5 6 7 8
Value 0x22 | OxF1 | Ox58 - o - - _

Figure 2-30: A typical Read By Identifier UDS-service request. The data identifier of
the memory location which should be read is specified on byte #2 and 3. The data
identifier length is variable.

The general negative response codes supported by the Security Access
service are listed in Table 2-9 and the Read By Identifier specific NRC is listed in
Table 2-10.

Table 2-9: General supported negative response codes in the UDS-service Read By
Identifier

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x31 Request Out Of Range

42

Table 2-10: Read By Identifier specific negative response code in the software loading
sequence

Byte Value | Negative Response Code (NRC) Definition
0x14 Response Too Long

* Response Too Long (0x14): Should be sent if the total length of the
response exceeds the maximum length defined in the governing
transport protocol.

Write By Identifier service

The Write By Identifier service is used to write data to a specific memory
location, for example writing programming date and fingerprint data. Typically
this is done right before transferring data to the ECU and/or after a successful
software loading sequence. An example of a Write By Identifier UDS-request is
shown in Figure 2-31.

Byte #| 1 2 3 4 5 6 7 8
Value Ox2E OxF1 Ox58 Ox15 | Ox11 Ox19 0x02 0x03

Figure 2-31: A typical Write By Identifier UDS-service request. The data identifier of
the memory location which should be written to is specified on byte #2 and 3. The
following bytes represent the data record that should be written to that memory
location. The data identifier and record length is variable.

The negative response codes supported by the ECU Reset service are listed in
Table 2-11.

Table 2-11: Negative response codes supported by the Write By Identifier service

Byte Value | Negative Response Code (NRC) Definition
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x31 Request Out Of Range
0x33 Security Access Denied
0x72 General Programming Failure

Routine Control service
The Routine Control service is one of the most flexible services in the UDS-
standard. It is typically used in the software loading sequence to check

43

programming pre-conditions and disable failsafe reactions in pre-programming
(see Chapter 2.8.4). Also used for performing erasure of EEPROM or flash
memory before downloading a new block, checking for valid flash memory and
application after the transfer of data. The structure of a routine control service is
shown in Figure 2-32.

One of the Routine Control services defined in the UDS-standard is the Erase
Memory or Erase Flash routine. It will perform the erasure of EEPROM and flash
memory before loading a new block. It has the routine identifier FFO1, specified
on bytes #3-4 in the UDS-request. The remaining bytes of the request contain a
routine control option record which is of variable length depending on vehicle
manufacturing specification and which routine identifier is used. An example of a
start Erase Flash Routine Control service is shown in Figure 2-33.

Figure 2-32: Start Routine Control Service UDS-request. Sub-function byte value
0x01 indicates Start Routine. The routine identifier (ID) is written on bytes #3-4.

Figure 2-33: A typical Erase Flash Routine Control UDS-request. This request aims to
start an erasure of a EEPROM or flash memory sector before downloading block
0x15.

The negative response codes supported by the Routine Control service are
listed in Table 2-12.

44

Table 2-12: Negative response codes supported by the Routine Control service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x24 Request Sequence Error
0x31 Request Out Of Range
0x33 Security Access Denied
0x72 General Programming Failure

Request Download service

The Request Download service together with Transfer Data and Request Transfer
Exit constitute the main components of the actual transfer of new block data to a
reprogrammable ECU. A Request Download UDS-request contains information of
which memory address the data block should be downloaded to, how large the
data block is in bytes and if the data block is encrypted and/or compressed. The
structure of a Request Download UDS-request can be seen in Figure 2-34.

Figure 2-34: Structure of a Request Download Service UDS-request. The data format
identifier specifies if data is encrypted and/or compressed. The address and length
format identifier specifies the size of the memory address and size fields in bytes. The
memory address indicates where the data should be written and the memory size field
specifies how many bytes are in the block to be downloaded.

The data format identifier specifies if data is encrypted and/or compressed.
The address and length format identifier specifies the size of the memory address
and size fields in bytes. The memory address indicates where the data should be

45

written and memory size specifies how many bytes are in the block to be
downloaded.

Examples to illustrate how the address and length format identifier affects the
size of the memory address and size fields can be seen in Figure 2-35 and Figure
2-36. Some projects use a start address as the memory address while other projects
use a block number to indicate the memory address.

Byte# 1 2 3 4 5 6 7 8
Value 0x34 | 0x00 | Ox41 | 0x31 | OxO0 | Ox00 @ Ox05 | 0x34

Figure 2-35: An example of a Request Download UDS-request with address and
length identifier on byte #3 with a byte value 0x41. The 4 represented by bits #7-4 on
byte #3 indicate that the memory size is written on 4 bytes. The 1 represented by bits
#3-0 on byte #3 indicates that the memory address field is written on 1 byte. Bytes #5-8
indicate how large data block should be downloaded, in this case 1332 bytes (0x0534).

Byte#| 1 2 3 4 5 6 7 8 9 10

11

Value | 0x34 | 0x00 | Ox44 | 0x00 | OxF1 | Ox00 | 0x00 | 0x00 | 0x00 | 0x05

0x34

Figure 2-36: An example of a Request Download UDS-request with address and
length identifier on byte #3 with a byte value 0x44. The 4 represented by bits #7-4 on
byte #3 indicate that the memory size is written on 4 bytes. The 4 represented by bits
#3-0 on byte #3 indicate that the memory address field is written on 1 byte. Bytes #8-
11 indicate how large data block should be downloaded, in this case 1332 bytes
(0x0534).

The response from a Request Download UDS-request contains information
about how large Transfer Data requests are accepted by the ECU. The UDS-
standard requires that the ECU must be able to accept at least a Transfer Data
request of the length specified by the “MaxNumberOfBlockLength” contained in
the response. Transfer Data requests of shorter length than what is indicated by the
“MaxNumberOfBlockLength” are vehicle manufacturer specific if they accept or
not. However, the last Transfer Data message may contain less than the maximum
size of data packages, which must be handled by the ECU according to the UDS-
standard.

Byte# 1 2 3 4 5 6 7 8
Value | 0x74 | 0x20 | OxOC | 0x62 - - = -

Figure 2-37: An example of a Request Download UDS-response. On byte #2 the length
format identifier indicates on how many bytes the “MaxNumberOfBlockLength”
should occupy. The 2 represented by bits #7-4 on byte #2 indicates that the
“MaxNumberOfBlockLength” will be written on two bytes. On byte #3-4 the “Max
NumberOfBlockLength” is equal to 3170 (0x0C62) in this case. This value includes the
block sequence counter and request SID of the Transfer Data Service.

46

The negative response codes supported by the Request Download service are
listed in Table 2-13.

Table 2-13: The negative response codes supported by the Request Download service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported
0x13 Incorrect Message Length Or Invalid Format
0x22 Conditions Not Correct
0x24 Request Sequence Error
0x31 Request Out Of Range
0x33 Security Access Denied
0x72 General Programming Failure

* Request Out Of Range (0x31) — Should be sent out if any of the
data fields in Figure 2-34 are not valid, i.e. dataformatldentifier,
addressAndLengthFormatldentifier, memory address and size fields
are invalid (see Figure 2-34).

Transfer Data service

The data in the software loading sequence is sent out in Transfer Data service-
requests. After the tester has received a positive Request Download response the
client (tester) will be permitted to send Transfer Data requests.

The Transfer Data request contains a block sequence counter, which can be
used in error handling during the data transfer. The block sequence counter should
start at 0x01, and then add 1 (one) every new Transfer Data request and when it
reaches OxFF it should roll over to 0x00. If two Transfer Data requests received by
the ECU contain the same block sequence counter the ECU should send positive
responses on both. It is recommended that the ECU only write the data to the flash
memory from the first Transfer Data request with the same block sequence
counter. A typical Transfer Data request sequence is shown in Figure 2-38. This
example shows the transfer of a block of size 1076 bytes. This ECU has a
“MaxNumberBlockLength” of 514 bytes including the request SID and block
sequence counter. This means that 512 bytes will be sent in the first two Transfer
Data requests and the last request will contain the last 52 bytes in the block file.

47

Byte# 1 2 3 Data bytes.. | MaxNumberOfBlockLength
Value | 0x36 | 0x01 | OxXX | OXXX | ... | OxXX | 0xXX
Byte#| 1 2 3 Data bytes.. | MaxNumberOfBlockLength
Value | 0x36 | 0x02 | OxXX | OxXX | ... | OxXX | OXXX
Byte#f| 1 2 3 Data bytes.. \ 54
Value | 0x36 | 0x03 | OxXX | OxXX | ... | OxXX | OXXX

Figure 2-38: A typical Transfer Data request sequence. This example shows the
transfer of 1076 bytes. The ECU has a “MaxNumberBlockLength” of 514 bytes
including the request SID and block sequence counter. This means that 512 bytes will
be sent in the first two Transfer Data requests and the last request will contain the last
52 bytes in order to complete the sending of 1076 data bytes.

The negative response codes supported by the Transfer Data service are listed
in Table 2-14 and the specific NRC:s for the Transfer Data service in the software
loading sequence are listed in Table 2-15.

Table 2-14: General supported negative response codes in the UDS-service Transfer
Data

Byte Value | Negative Response Code (NRC) Definition
0x13 Incorrect Message Length Or Invalid Format
0x24 Request Sequence Error
0x31 Request Out Of Range
0x72 General Programming Failure

Table 2-15: Transfer Data specific negative response codes in the software loading
sequence

Byte Value | Negative Response Code (NRC) Definition
0x71 Transfer Data Suspended
0x73 Wrong Block Sequence Counter
0x92/0x93 Voltage Too High / Voltage Too Low

* Transfer Data Suspended (0x71): If the memorySize (see Figure
2-34) parameter in the Request Download request does not match
the number of bytes sent by the Transfer Data requests this NRC
should be sent by the ECU.

* Wrong Block Sequence Counter (0x73): If the ECU notices an
error in the “blockSequenceCounter” sequence then it should send
this NRC.

48

* Voltage Too High / Voltage Too Low (0x92/0x93): Should be sent
if the voltage measured by the ECU are outside of the permitted
range for a software loading sequence.

Request Transfer Exit service

The Request Transfer Exit UDS-request should be sent after all the data has been
transferred with the Transfer Data requests. A typical Request Transfer Exit UDS-
request in the software loading is shown in Figure 2-39.

Byte# 1 2 3 4 5 6 7 8
Value | 0x37 - = - - - - _

Figure 2-39: A typical Request Transfer Exit UDS-request in the software loading.

The format of the Request Transfer Exit response is vehicle manufacture
specific; some of BW-PDS customers will send the checksum for the downloaded
block in the response (see Figure 2-40). In these cases it is the responsibility of the
tester (client) to check that this checksum matches and if it does not the tester
should abort the software loading sequence to avoid loading the incorrect data
onto the ECU. Other manufacturers use a separate Routine Control in which the
tester sends the checksum to the ECU and the ECU will handle the possible
checksum error instead.

Byte# 1 2 3 4 5 6 7 8
Value | 0x77 | OxFF | Ox7A - o - - _

Figure 2-40: Request Transfer Exit response with a block checksum included in the
response.

The negative response codes supported by the Request Transfer Exit are
listed in Table 2-16.

Table 2-16: Negative response codes supported by the Request Transfer Exit service

Byte Value | Negative Response Code (NRC) Definition
0x13 Incorrect Message Length Or Invalid Format
0x24 Request Sequence Error
0x31 Request Out Of Range
0x72 General Programming Failure

49

Tester Present service
The Tester Present UDS-service request is sent by the tester (client) to keep the
ECU in the current diagnostic session, which will prevent the ECU from returning
to the default diagnostic session, which would otherwise happen after a
predetermined time.

The negative response codes supported by the Tester Present service are
listed in Table 2-17.

Table 2-17: Negative response codes supported by the Tester Present service

Byte Value | Negative Response Code (NRC) Definition
0x12 Sub-function Not Supported

0x13 Incorrect Message Length Or Invalid Format

2.8.4 Standardized software loading sequence

Within the UDS-standard 1SO14229-1 there is a framework defined for “non-
volatile server memory programming process [19, p. 303]” or software loading
sequence for reprogrammable ECU:s in other words. It contains specifications for
the entire software loading sequence with mandatory; optional/recommended and
vehicle manufacture specific steps to accommodate different vehicle
manufacturers preferences but at the same time keep the flashing sequence
relatively similar regardless of which vehicle manufacturer specific flashing
sequence is used.

The software loading sequence defined in the UDS-standard is divided into
two main programming phases. Programming phase #1 — download of application
software and/or application data and programming phase #2 — server configuration
that is an optional phase. These programming phases are in turn divided into three
sub-steps: pre-programming, programming and post-programming (see Figure
2-41).

50

Figure 2-41: Non-volatile server memory programming process framework defined in
the UDS-standard 1SO14229-1

Pre-programming in phase #1

The pre-programming step in programming phase #1 is an optional step, which
configures the ECU before the actual transfer of data. The mandatory steps
included in this pre-programming step are sending a Diagnostic Session Control
(0x10) UDS-request in order to enter the extended diagnostic session (0x03) on
the ECU. When the ECU is in extended session it is possible for the tester to send
UDS-requests Control DTC Setting (0x85) and Communication Control (0x28) to
disable updating of DTC:s and disable non-diagnostic communication. Other
optional steps include checking programming preconditions and disable fail-safe
reactions with a Routine Control (0x31) UDS-request. Some manufacturers also
use Read Data By Identifier (0x22) to read ECU data.

Programming in phase #1
The actual downloading of application software and/or application data is done in
the programming step in programming phase #1. The mandatory steps included in

51

the programming phase are to enter programming session (0x02) by using a
Diagnostic Session Control (0x10) UDS-request. Then sending the main
downloading sequence UDS-requests Request Download (0x34), Transfer Data
(0x36) and Request Transfer Exit (0x37). There are also several
optional/recommended steps such as Security Access (0x27) with the seed and key
scheme, Erase Memory (0xFF00) and various checks on EEPROM or flash
memory by using the Routine Control (0x31) UDS-service.

Post-programming in phase #1

The post-programming step of programming phase #1 only contains one step
which can either be a ECU Reset (0x11) or a Diagnostic Session Control (0x10)
request to put the ECU in the default diagnostic session.

Pre-programming in phase #2

The pre-programming step in phase #2 — server configuration is performed by
sending a request to enter the extended diagnostic session to for example enable
the control of updating of DTC:s and re-enable communication with the Control
DTC Setting (0x85) and Communication Control (0x27) UDS-services.

Programming in phase #2

In the programming step in phase #2 it is mandatory to clear diagnostic
information, which might have been stored in the re-programmable ECU with a
Clear Diagnostic Information (0x14) UDS-service. This step was, however, not
performed by any of the projects at BW-PDS, which were analyzed in this project.
There is an option to include vehicle manufacturer specific options in this step.

Post-programming in phase #2

The post-programming step of programming phase #2 only contains one step
which can either be a ECU Reset (0x11) or a Diagnostic Session Control request
to put the ECU in the default diagnostic session just like the post-programming
step in phase #1.

2.9 Diagnostic communication over CAN
ISO15765-2

The Diagnostic communication over Controller Area Network (DoCAN) for road
vehicles or ISO15765-2 is the governing standard for transport protocol layer (OSI
layer 4) and network layer services (OSI layer 3) for the implementation used in

52

this project. Other standards for implementation of the transport and network
layers in the OSI-model for the UDS-standard include Communication on
FlexRay (ISO10681-2), Diagnostic communication over Internet Protocol (DoIP)
for road vehicles (ISO13400-2) and Local Interconnect Network (LIN) for road
vehicles (ISO17987-2) [19, p. vii].

The international standard ISO15765-2 contains specifications of how for
example a data frame, which cannot fit into a single CAN-frame, should be
handled by using segmented messages and the minimum time between
consecutive frames allowed SeparationTime minimum (STmin).

Most of the transport and network specific issues are handled automatically
by CANoe through the diagnostic communication interface (see Chapter 4.2).
Therefore the details contained within the ISO15765-2 have not been of such
importance to the implementation of this project, which has mostly dealt with
issues regarding the session and application layers (layers 5 and 7) in the OSI-
model [20].

210 AUTOSAR

The AUTomotive Open System ARchitecture (AUTOSAR) is a partnership
between several vehicle manufactures and automotive suppliers established in
order to create an open industry standard for automotive ECU:s. The goal is to
create an architecture that promotes the reuse of software, enable collaboration
between several different manufacturers and provide scalable systems, which are
“Commercial of the Shelf” solutions more frequently.

According to a Master’s thesis from Jonkoping University there are two
protocols in the AUTOSAR-standard, which specify how to implement the
software loading sequence. These are UDS and Universal Measurement and
Calibration Protocol (XCP) specified by Association for Standardization of
Automation and Measuring Systems (ASAM). This project relies heavily on the
UDS-standard and according to the authors of the Master’s thesis from Jonkoping
University the UDS-standard is the primary protocol used to implement the
“AUTOSAR specification of Flash Driver” [21] [22].

53

3. Equipment

The equipment used in this project was ECU:s from several different customers
similar to the one depicted in Figure 3-2. It has two main connectors; the larger
connector is used for the CAN-communication and the smaller one is connected to
a pump that regulates how the torque is applied by the coupling. Several of BW-
PDS customers let the software-testing department in Landskrona perform tests on
the ECU-software that controls the coupling in the torque transfer systems.

The microcontrollers that are used in modern ECU:s generally have relativity
limited hardware in order to keep the cost down of the final vehicle. ECU:s
typically have a few kilobytes of a volatile memory type like SRAM integrated on
the microcontroller and a few megabytes of non-volatile memory such as
EEPROM or flash memory to store the software on the ECU.

During the software loading sequence or flashing in this project the ECU is
connected to a real-time system VN8970 (see Figure 3-1) from Vector Informatik
GmbH.

Figure 3-1: VN8970 real-time system from Vector Informatik GmbH for simulating
the CAN-network in which the ECU will later be used. Figure by A. Karlsson [23].

54

The VN8970 system provides the possibility of simulating how the ECU will
perform in the conditions in which it will later be used in the vehicle. It has 4
channels that can be used for CAN or LIN communication as well as a
configurable digital/analog channel. An ATMEL AT91SAMY processor powers
the real-time system in the VN8970.

A CAN/LIN to USB interface module VN1610 from Vector Informatik
GmbH was used to connect the PC to the simulated CAN-network. The ECU is
connected to a power supply, which can be controlled from CANoe.

For software development Microsoft Visual Studio 2013 was used for the
binary file converter (see Chapter 4.1) and the rest of the development for CANoe
was done in the Vector CAPL Browser.

Figure 3-2: Electrical Control Unit used in a BW-PDS coupling in a torque transfer
system. Figure by A. Karlsson [23].

55

4. Implementation

In order to get the software loading process into BW-PDS’s test environment
CANoe, vendor-specific data has to be converted into the CIN-file format (see
Figure 4-1) that can be read by CANoe. The conversion of vendor-specific data is
done by a converter application, which was developed in this project and is
presented in Chapter 4.1. The data extracted is then used for the software loading
process in CANoe.

‘ Vendor-specific data ‘

Vendor
#1
Vendor
#2

CIN
File

Vendor
#3

Figure 4-1: Structure of solution for the binary data conversion. The vendor-specific
data is converted into a CIN-file by a converter application, which can be read by
CANoe.

The software loading process is performed in CANoe by using the structure
of the CAPL-solution presented in Figure 4-2. The common UDS flash sequence
discussed in Chapter 4.4, which was developed in this project contains the vehicle
manufacturer specific software loading sequences. It also contains commonly used
test cases on the software loading sequence. These test cases can be called from a
project specific CAN-file (see Chapter 2.6.1). This structure enables the user to
choose which test cases should be performed on the software loading sequence in
a software test and add project specific flash test cases in a separate file.

The flashing sequence is then performed by utilizing the functions in
common UDS flash services (see Chapter 4.3) to perform the actual software

56

loading sequence. Common UDS flash services, which was also developed in this
project, contain all the functions that are commonly used in the UDS-software
loading sequence. The diagnostic communication interface (see Chapter 4.2)
performs the actual sending of the UDS-messages in on the CAN-bus.

Project Specific
Flash Test Cases —
#1

Project Specific
Flash Test Cases —
#..

Software Loading
Sequence #1

Project Specific Software Loading
Flash Test Cases —| Sequence #2
#..

Software Loading
Project Specific Sequence #3
Flash Test Cases —

#n

Figure 4-2: Structure of CAPL-solution, which performs the software loading process
according to each vehicle manufacturers specification. Common UDS flash sequence
contains the commonly used test cases, which can be used in different project specific,
flash test cases. The project specific flash test cases determine which test cases to be
performed. The Common UDS flash services interface contains functions to send the
UDS-services used in the flashing sequence. The diagnostic communication interface
utilizes the UDS-support in CANoe to send messages to the ECU.

4.1 Converter application

A C# Windows Forms application was developed in this project to convert the
vendor-specific binary data format in to a .CIN file, which can be read by CANoe.
The structure of the converter application can be seen in Figure 4-3. The file
parsers used in the internally developed flashing tool were integrated into the
converter application. The graphical user interfaces created for the converter
application also took inspiration from the current flashing tool, as the requirements
are similar. Some modifications were however made to simplify the application,
as this application will be used by a more limited user group than the internally
developed flashing tool used in production. There is also no need of a “save
configuration” option as once the binary files have been converted the files needed
for the software loading process in that project are available to use. Therefore in
theory the conversion of the binary files only has to be done once every new
software release.

57

Figure 4-3: Structure of the converter application. A special interface was needed for
the BIN-file format. Arrows indicate the data exchange in the application.

4.1.1 Main graphical user interface and BIN-file
interface

The main graphical user interface (GUI) is used for most file formats that contain
all the data needed for a software loading sequence. The main GUI can be seen in
Figure 4-4. The BIN-file format does not contain an identifier so it is not possible
to separate the file blocks from each other based on the data contained in the file.
Therefore a separate interface was created in which the user adds the binary data
files to their corresponding file block identifier. The separate graphical user
interface is depicted in Figure 4-5. This GUI is similar to the GUI in the internally
developed flashing tool (see Figure 2-8). The user can mark a selected row and
then press the button “Add Bin File To Selected Row” and the interface will then
automatically shift down to the next row. When all rows are filled the user can
press the convert button that will output a .CIN-file in the same way as for the
other file formats.

58

-l UDS Flash Converter ‘ i
File Flasher Target Vehicle: Vehicle Data Format: Converter
Bootloader
Other Files
[Add Botoader) [Add Other i |

Figure 4-4: The main graphical user interface used for most file formats. First the
user selects the target flasher, and then adds the secondary bootloader, then the other
files. The application will then output the CIN-files to a folder called FlashingFiles
when the convert button is pressed.

Type BlockNbr File Signature File
» Bootloader | 30
Application 1|50
Application 2 | 51

Data 1 60

Data 2 61
< m | »

[Add Bin File To Selected Row Convert

— —_—
Figure 4-5: Special interface for the BIN-file format. The user adds the files to the
corresponding block number (or the block identifier). A special signature file is loaded
automatically if it is in the same folder with the correct filename.

4.1.2 Generic data format for the flashing sequence

In this project a generic binary data file format was developed in order to enable
implementation of common test cases on the software loading process specified by
the UDS-standard. Several of BW-PDS customers use different binary data

59

formats for containing the data needed for the software loading sequence (see
Chapter 2.2 for more details on this). This created a challenge to develop a generic
format that would work for all the manufacturers. The different binary data
formats contained varying amount of information needed for the vendor-specific
flashing sequences and also had different numbers of binary data files. It was
however possible to create a generic format for BW-PDS’s customers. The generic
file-format developed in this project is divided in two different types of CIN-files
which are depicted in Figure 4-6 and Figure 4-7.

Block Byte []
—
File bBinaryData

e i

Figure 4-6: The generic format for the block binary data-files used in the flashing
sequence in this project.

The generic format for block binary data-file contains a header with
variables, which are used in the flashing sequence to perform download of the
binary data included in the block files. These variables are explained in the list
below.

* bBinaryData — The binary data to be transferred in the software
loading sequence.

* bDataFormatID — Is used in the dataFormatldentifer field in the
Request Download service to specify if the block is compressed
and/or encrypted.

* qwBlockChecksum — Contains the checksum for the binary data
block which is being downloaded.

* I1RequestDownloadBlockID — Is used in the memoryAddress field
in the Request Download service as an identifier for the binary data
block.

* 1RequestDownloadBlockSize — Is used in the memorySize field in
the Request Download service to specify the size of the block to be
downloaded in the Transfer Data request.

* lEraseFlashBlockID — Similar function as the RequestDownloadID
variable but used in the Erase Flash Routine Control UDS-request.

60

* IEraseFlashBlockSize
RequestDownloadBlockSize variable but used in the Erase Flash

Routine Control UDS-request.

Similar

function

as the

Main
|
_ File -
I
! ! ! ! ! !
Block Block Block Block Block Block
File #0 File #1 File #2 File #3 File #4 File #5

Figure 4-7: The generic format for the main file which includes the block binary data-

files (see Figure 4-6) for the flashing sequence in this project.

The main file, which includes all of the binary data block files for the
flashing sequence, also contains two variables which are used to control the
software loading sequence according to the corresponding project specification.
These are described in the list below.

4.2 Diagnostic communication interface

* bNumberOfBlocks — Number of real blocks contained in the
projects. This number excludes the dummy blocks which are added
to avoid compilation errors in the CAPL-code.

* DbFlashingSequence — Used to control which vendor specific
flashing sequence (see Figure 4-2) is run during the flash tests.

At the software testing department at BW-PDS a diagnostic communication
interface has been developed using the diagnostic CAPL functions (see Chapter
2.6). This simplifies the process of sending the Unified Diagnostic Service (UDS)
messages further. An example of a function sending a simple UDS-message using
the interface is shown in Figure 4-8.

61

void ControlDICSetting (byte bDIC_Setting)

* FUNCTION NAME ControlDICSetting

* DESCRIPTION Sends out message to ECU to disable or enable DIC-MESSAGES.
* PARBMETERS bDIC_Setting: bDTIC_TURN_ON or bDIC_TURN OFF

* RETURN VALUE None.

byte bRequest[5]:;

bRequest [0] = 0x85;
bRequest[1l] = bDIC_Setting;

iDCSendRequest (bRequest, 2):;
iDCTestWaitForDiagResponse (5000) ;

//Reset communication type to physical
DCSetCommunicationType (1PHYSICAL) ;

}

Figure 4-8: Code for the function to send a simple UDS-message. This code sends a
ControlDTCSetting message (see Table 2-1) to the specified ECU. This is a function
contained in the common UDS flash services interface.

There are also helpful features when reading UDS-responses from the ECU.
An example of the code for reading a UDS-response is shown in Figure 4-9. The
function iDCGetRespPrimitiveSize() gets the size of the last received UDS-
message, then a simple code to extract the maximum block size allowed according
to the RequestDownload UDS-response (see Table 2-1). The function
iDCGetRespPrimitiveByte() returns the byte at the position specified by the input
parameter.

byte bInResponse[2]:
byte bMaxNumberOfBlockLengthByteArray[2]:

iInPrimativeSize = iDCGetRespPrimitiveSize ()

for(i=0; i<iInPrimativeSize-2; 1i++){
bInResponse[i] = iDCGetRespPrimitiveByte (i+2);
}
bMaxNumberOfBlockLengthBytelArray[0] = bInResponse[0];
bMaxNumberOfBlockLengthBytelArray[1l] bInResponse([1l];

Figure 4-9: Example of reading an UDS-message with the diagnostic communication
interface. This example reads the maximum download block size allowed by the ECU

62

from the RequestDownload UDS-response (see Figure 2-37). The first two bytes in the
response contain the maximum size permitted.

4.2.1 Modifications to diagnostic communication
interface

A few modifications and additions have been made to the existing diagnostic
communication interface during the project to support a complete software
downloading process. These modifications mainly regard the size of the UDS-
messages. Some of the CAN-data frames used in the software loading process
were larger than what previously had been tested when using the diagnostic
communication interface. Also some new features were added to the diagnostic
communication interface: enable or disable suppression of positive response UDS-
messages and a function to check if the last response received was positive.

4.3 Common UDS flash services

The common UDS flash services interface contains all the methods for sending the
different UDS-service messages needed for the flashing sequence using the
diagnostic communication interface (see Chapter 4.2).

Each UDS-service used in the software loading sequence (see Table 2-1) has
a corresponding function in the common UDS flash services interface. One
example of the functions in the interface is the ControlDTCSetting function in
Figure 4-8, which represents UDS-service with the SID 0x85. The required DTC-
setting is sent as a parameter to this function. Another more advanced example of
a UDS-service is the diagnostic session control. The function used for setting the
correct session in the common UDS flash services interface can be seen in Figure
4-10. In addition to sending the UDS-request the function will update the timing
values P2 and P2 extended (see Chapter 2.8.2) to represent the current session

values. The function will also write the default diagnostic session timing values,
which will be used in the ECU Reset function.

63

void SetDiagnosticSessionControl (byte bInDiagnosticSession)

* FUNCTION NAME SetDiagnosticSessionControl

* DESCRIPTION Sends DiagnosticSessionControl UDS-message to ECU, Sets P2/P2ex
* according to diagnostic session response

* PARBMETERS bInDiagnosticSession - Specifice session.

* Ex: bDEFAULT DIAGNOSTIC

* bPROGRAMMING DIAGNOS

* RETURN VALUE None

PR R e R e R R e R T R ey
/

byte bRequest([2];

bRequest[0] = 0x10;
bRequest[1] bInDiagnosticSession;

iDCSendRequest (bRequest, 2);
iDCTestWaitForDiagResponse (5000) ;

//Help function to set P2 and P2star, Only if positive response
if (iDCCheckIfPositiveResponse () != iFALSE)
{
HelpFunctionSetP2_ P2starFromValuesInDiagnosticSessionControl();
if (bDEFAULT_ DIAGNOSTIC_ SESSION == bInDiagnosticSession)
{
HelpFunctionWriteP2ValuesFromDefaultSession():

}
//Reset communication type to physical
DCSetCommunicationType (1PHYSICAL) ;

}

Figure 4-10: Set Diagnostic Session Control function in the common UDS flash
services interface. It will send UDS-service message to initiate a diagnostic session
change on the ECU. The parameter to the function determines which session is
requested. After a positive UDS-response has been received from the ECU the
function will set the P2/P2 extended timing values in CANoe according to the
response. The function will also write the default diagnostic session timing values,
which will be used in the ECU Reset function.

4.4 Common UDS flash sequence

The common UDS flash sequence interface contains the software downloading
sequence for the customer’s projects at the software-testing department at BW-
PDS. By using markers/flags the flashing sequence is performed according to the
respective vehicle manufacturer specification. The common UDS flash sequence
interface also contains the commonly used test cases, which make it possible to
run several different flash tests based on the UDS-standard by simply calling the
commonly used test cases with a parameter corresponding to the requested flash

64

test case. The parameter corresponding to the specific flash test will then by using
markers/flags perform the flash test by modifying the main downloading sequence
UDS-services Request Download (0x34), Transfer Data (0x36) and Request
Transfer Exit (0x37) (see programming step in programming phase #1 in Chapter
2.8.4).

The flash sequences contained in the common UDS flash sequence interface
are divided into a few sub-steps which differ slightly from the sub-steps presented
in the “non-volatile server memory programming” in the UDS-standard. The
reasons for the differences in the grouping are due to the effort making the
flashing sequence more modular and graspable. This is important when
automatically generating test reports, running automated software test cases on the
flashing sequence and also adding the possibility to change the download
sequence and thereby making it possible to easy to create new commonly used test
cases.

4.4.1 Commonly used test cases

Each sub-step in the flashing sequence is contained within a CAPL-test function.
These test functions can then be combined in order to create commonly used test
cases.

Download with errors on all blocks except SBL

One example of a commonly used test case is “Download with errors on all blocks
except SBL” (see Figure 4-11) in which it is possible add parameters that will alter
the flashing sequence with the corresponding modification for the flash test case.

65

Figure 4-11: Flow chart for the most commonly used test case “Download with errors
on all blocks except SBL”.

The commonly used test case “Download with errors on all blocks except
SBL” is the most utilized test case in this project. The reasons for this is that it
performs the flashing sequence in the normal way with errors on all blocks except
for the Secondary Boot Loader (SBL). If the errors had also been injected on the
SBL then it would severely affect the downloading process of the following
blocks as it is the SBL that performs the downloading of the other blocks (see
Chapter 2.7). The function of each test function in Figure 4-11 can be seen in the
list below.

* Set programming constants: Sets various constants according to
the specific vehicle manufacturers specification, such as security
access type, addressAndLengthldentifier and default max block
length allowed in Transfer Data (0x36, see Chapter 2.8.3).

66

Pre-programming — Performs the pre-programming according to
the specification of the pre-programming in programming phase #1
in the framework specified by the UDS-standard (see Chapter 2.8.4).
Security Access — Performs the seed and key sequence (see Chapter
2.8.3), which is included in the programming step in programming
phase #1 in the UDS-specification (see Chapter 2.8.4).

Download SBL - Performs download of the SBL with UDS-
services Request Download 0x34, Transfer Data 0x36 and Request
Transfer Exit (0x37). Some vehicle manufacturers perform an
activation of the SBL after downloading it. Erase Flash (OxFF)
Routine Control is not performed on the SBL as the SBL is loaded
onto the volatile memory type RAM, which means that it will not be
available after a ECU reset. Otherwise the downloading of SBL is
identical to the process for the flowing blocks.

Download second to sixth block - Performs download of
corresponding block with UDS-services Request Download (0x34),
Transfer Data (0x36) and Request Transfer Exit (0x37). The number
of blocks varies from manufacturer to manufacturer; therefore less
than six blocks may be downloaded.

Post-programming — Performs various Routine Controls (0x31) to
verify a correct flashing sequence, resets communication and DTC
related options on the ECU by using Communication Control (0x28)
and ControlDTCSetting (0x85). Is basically a mix of the post-
programming in programing phase #1 and the entire programming
phase #2.

Check if application alive — A test function which is used to check
if there is a valid application after the performed test case by
checking if the ECU sends periodic messages on the CAN-channel.

If one of the test cases fails during one of the sub-steps in the flow in Figure

4-11 the “Download with errors on all blocks except SBL” test case will perform a
ECU Reset and check if the ECU is responsive, if the ECU is unresponsive then a
rescue mission of the ECU will be performed by switching off the power to the
ECU and turn it on again and send Diagnostic Session Control UDS-request in
order to catch the ECU on boot. A normal programming will then be performed
with no errors to reset the ECU to a functional state before starting the next test
case. This sequence is shown in Figure 4-12.

67

Figure 4-12: Sequence, which is run after a failed test case in the commonly used test
case “Download with errors on all blocks except SBL”.

A similar sequence to the one depicted in Figure 4-12 will also be performed
if the check if the application is alive step fails in the sequence depicted in Figure
4-11 even if the test case was passed. This is done in order to ensure that the
previous test case will not affect the following test case.

Other commonly used test cases

Another test, which can be commonly used, is the test case “Download only SBL
and second block” which simply downloads one of the blocks other than the SBL
and checks if the ECU will handle this. This test case is created by removing the
test functions for the download of the third to the sixth block from the sequence in
Figure 4-11 as can be seen in Figure 4-13. Another test case based on this method
is the “Download SBL then other blocks in reverse order” to check if the ECU
handles this. The user can also change which of the downloaded blocks should be
injected with errors simply by modifying the parameter, which is sent in the sub-
steps.

68

Figure 4-13: Flow chart for the test case of only loading SBL and second block for the
test case “Download only SBL and second block”.

69

5. Evaluation

5.1 Flash test cases

The flash test cases implemented in this project are focused on testing the generic
requirements on a full software loading sequence specified in the UDS-standard.
The tests implemented and tested in this project are explained in detail in the
Appendix. These flash test cases cover requirements identified in the UDS-
standard which should be accepted by the ECU, such as accepting duplicate
Transfer Data Requests, but also covers areas where the ECU should be able to
identify sequence errors and wrongly transmitted data. Some of the tests also
cover recommendations in the UDS rather than strict requirements, such as the
need to support different maximum lengths for Transfer Data requests.

In this project four ECU:s have been tested in all of the implemented test
cases. A summary of the results from these tests is presented in the list below.

* Two ECU:s passed all the implemented test cases.

* One ECU failed on 6 of the 22 test cases or 27 % of the
implemented test cases.

* One ECU failed on 7 out of the 22 test cases or 32 % of the
implemented test cases.

A few notes to add to these results are that if tests that covers one area fails
then it is likely that other tests will fail as well as they cover a related requirement.
Also some of the tests included are recommendations in the UDS-standard rather
than strict requirements.

5.2 Automatically generated test reports

In order to efficiently test and evaluate flash test cases on the software loading
sequence there is a need for automatically generated test reports so that a test

70

engineer can analyze the downloading sequence once all tests have been run.
Running all the test cases implemented in this project in sequence will take
between 20 and 40 minutes depending on which ECU-project is being tested. If
each of these tests had to be started and monitored manually by a test engineer
then it would require a lot of time, whereas if when there is an automatic
evaluation sequence performed on the software loading sequence then the most
common errors can easily be complied into an automatically generated test report.
An example of the overview given to the test engineer after all test have been
performed on the current ECU is given in Figure 5-1. Example of an evaluation

done in the test report is depicted in Figure 5-2.

Statistics
Overall number of test cases 22
Executed test cases 22 100% of all test cases
Not executed test cases 0 0% of all test cases
Test cases passed 22 100% of executed test cases
Test cases failed 0 0% of executed test cases

Warnings occured during test execution.

Test Case Results

1 |1 Subtract one byte from max block length -
202 Setmaxblock Length to 128 bytes ppass
3 |3 Send blockSequenceCounter twice on first block ppass
4 |4 Send blockSequenceCounter twice with error on the second block -
© |5 Send blockSequenceCounter twice on all message -
66 Send blocksequence fifty times on first request ppass
7 |7 Send wrong blockSeqgeuenceCounter on first block -
8 8 Send wrong blockSequenceCounter after rollover -
9119 Send wrong blockSequenceCounter after rollover and set block length to 128 bytes [FEEE
10 10 Modify last byte in last transferdata request [PE88 warning
11| 11 Modify first byte in first transferdata request -warning
12| 12 Send empty block on first block &8s warning
1313 Send empty transferData request after last block &8s warning
14/ 14 Send more data by adding dummy block -warning
15/15 Send less data by removing one block -warning
16 16 Send more data than specified P35S warning
17 17 Send less data than specified [PE88 warning
18/ 18 Send incorrect address and length identifier -warning
19 19 Modify memoryAddress in request download -warning
20 20 Send second file-block twice ppass
2121 Download only SBL and second file-block -
22 22 Download file blocks in reverse order ppass

Figure 5-1: Example of the overview the test engineer is given of the flash tests run on
the software loading sequence by the automatically generated test reports in CANoe.
A warning in the test report is usually sent when the ECU is unresponsive or there is

71

no valid application, but is an acceptable outcome in the current test case (see Figure

0-3 in Appendix).

429745581
430.325487
430.325487
430.325487
430.665844
430.665844
430665844
430665844
431.112653
431.112653
431.562605

iDCSendRequest
iDCTestWaitForDiagResponse
Info
iDCSendRequest
iDCTestWaitForDiagResponse
Info
Diagnosis
iDCSendRequest
iDCTestWaitForDiagResponse
iDCSendRequest
iDCTestWaitForDiagResponse

Sending 34 00 44 00 C1 00 00 00 03 DC 00 -
Received 74 20 OF FF -
Sending blockSequenceCounter = 2 on first block -
Sending 36 02 with 4093 data bytes -
Received 7F 36 73 -
ECU noticed sequence error in blockSequenceCounter

Response received with NRC 0x73 (wrongBIockSequenceCounter)-
Sending 36 01 with 4093 data bytes

Received 76 01 -
Sending 36 02 with 4093 data bytes -
Received 76 02

Figure 5-2: Example of the evaluation done in an automatically generated test report
on the test case “Send wrong first blockSequenceCounter” (see Appendix)

72

6. Conclusions

This project has provided the software-testing department at BW-PDS the
possibility of running test cases on a full UDS-based software loading sequence
and thereby extending the test coverage to cover many of the requirements
specified in ISO14229-1. This will enable the testing of both internally and
externally developed ECU bootloader software. By being able to test and verify
that the requirements specified in UDS are fulfilled, BW-PDS can deliver a final
product that is more stable and follows the main international standard used for
the software loading sequence in the road vehicles category.

In the final part of this project a large part of the time was spent on
implementing a way to run automated test cases, which enables running test cases
on the flashing sequence without the need for user intervention before all tests are
completed saving a lot of unnecessary work. Then by analyzing the automatically
generated test reports the user can make an informed judgment if the ECU follows
the specification which the current test cases was designed to test.

During this project the advantages of having a customizable software loading
sequence to test the both the requirements in the UDS-standard and emulate their
customers flashing sequence have become apparent.

The flash test cases which, have been implemented and tested on both
internally and externally developed ECU bootloader software, have shown that
testing in this area is still to some degree limited and there are still issues present
even in commercial products.

6.1 Future work

This project was never meant to be a final solution but instead provide a
framework which could be expanded to fit the needs which arise during testing of
the ECU bootloader software and thereby over time increase the test coverage as
more and more experience is gained of the common issues. The focus in this

73

project has been to implement tests on generic requirements identified in the UDS-
standard in the main software loading sequence, which had not been possible for
the software testing department to test before this project as there was no way to
perform a full software loading sequence in CANoe.

By focusing on the generic requirements the tests which were implemented
could be run on several different ECU:s and thereby quickly increasing the test
coverage across a wide range of projects. The future work following this project
will contain implementing vendor-specific test cases, identifying more generic
requirements and more test cases on the identified requirements. More tests are
needed on both newly identified requirements as well as those currently identified,
as there are several ways to test a single requirement that may present different
results.

There are also other areas which could be tested, for example how external
conditions would impact the software loading sequence by simulating the external
conditions which can occur by utilizing the capabilities of CANoe. During this
project the support for a few customer projects at BW-PDS have been omitted
from the current solution as the most important projects were prioritized and focus
was in some part to show the possibility of performing tests on a vendor-specific
software loading sequence in a unified way. In future work more vendors could be
supported within this framework relatively easy because of the standardization
effort carried out by the International Organization for Standardization (ISO) to
present the UDS-standard for road vehicles ISO14229-1.

74

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

7. References

tE)

BorgWarner, “BorgWarner Official Presentation,” Landskrona, Sweden,

2014.

M. Rings and P. Phillips, "Adding Unified Diagnostic Services over CAN to
an HIL Test System" SAE Technical Paper 2011-01-0454 , 2011,
doi:10.4271/2011-01-0454.

Vector Informatik GmBH, "Learning Module CAN" [Online]. Available:
http://elearning.vector.com/index.php?wbt Is_kapitel id=1329975&root=37
8422&seite=vl _can_introduction en. [Accessed 12 November 2015].

National Instruments, "FlexRay Automotive Communication Bus Overview"
21 August 2009. [Online]. Available: http://www.ni.com/white-
paper/3352/en/#tocl. [Accessed 12 November 2015].

E. Mayer, "Serial Bus Systems in the Automobile - Part 2: Reliable data
exchange in the automobile with CAN" Vector GmBh, December 2006.
[Online]. Available:
http://elearning.vector.com/portal/medien/cmc/press/PTR/SerialBusSystems
_Part2 ElektronikAutomotive 200612 PressArticle EN.pdf. [Accessed 20
November 2015].

Vector Informatik GmBh, "Learning Module FlexRay" [Online]. Available:
http://elearning.vector.com/index.php?wbt_Is_kapitel id=1330154&root=37
8422&seite=vl_flexray introduction en. [Accessed 24 November 2015].
Vector Informatik GmBh, "Learning module LIN" [Online]. Available:
http://elearning.vector.com/index.php?wbt_Is_kapitel id=1330149&root=37
8422&seite=vl lin_introduction_en. [Accessed 8 January 2016].

MOST Cooperation, “Motivation for MOST” [Online]. Available:
http://www.mostcooperation.com/technology/introduction/. ~[Accessed 8

75

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

76

January 2016].

Motorola Inc, Motorola M68000 Family Programmer's Reference Manual
Motorola Inc, Schamburg, United States, 1992, pp. C-1 - C8.

“Motorola's M6800 microcomputer system, which can operate from a single
5-volt supply, is moving out of the sampling stage and into full production”
Electronics, pp. 114-115, 26 December, 1974 Vol.47 No. 26.

V. Bordyk, "Analysis of software and hardware configuration" Department
of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden, 2012.

SB-Projects, “Intel HEX format” SB-Projects, [Online]. Available:
http://www.sbprojects.com/knowledge/fileformats/intelhex.php. [Accessed
18 December 2015].

Wikipedia, “EEPROM” 7 December 2015. [Online]. Available:
https://en.wikipedia.org/wiki/EEPROM. [Accessed 19 February 2016].

Wikipedia, “Flash memory” 6 February 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Flash_memory. [Accessed 19 February 2016].

Vector Informatik GmbH, "ECU Development & Test with CANoe" 2015.
[Online]. Available: http://vector.com/vi_canoe en.html. [Accessed 11
November 2015].

Vector CANtech, Inc., “Programming with CAPL” 14 December 2004.
[Online]. Available:
http://vector.com/portal/medien/vector cantech/faq/ProgrammingWithCAP
L.pdf. [Accessed 12 November 2015].

Vector Informatik GmBh, "Include Files: Overview" in CAPL Introduction,
Stuttgart, Germany, Vector Informatik GmBh, 2016.

National Instruments, “ECU Designing and Testing using National
Instruments Products,” 7 November 2009. [Online]. Available:
http://www.ni.com/white-paper/3312/en/. [Accessed 19 November 2015].

International Organization for Standardization, “Road vehicles - Unified
diagnostic services (UDS) - Part 1: Specification and Requirements (ISO-
14229-1:2013, IDT)” Swedish Standards Institute (SIS), Stockholm,
Sweden, 2013.

International Organization for Standardization, “Road vehicles - Diagnostic
communication over Controller Area - Network (DoCAN) - Part 2:
Transport protocol and network layer services (ISO 15765-2:2011, IDT)”
Swedish Standards Institute, Stockholm, Sweden, 2011.

[21] J. G. D. Pehrsson, “Bootloader with reprogramming functionality for
electronic control units in vehicles: Analysis, design and Implementation”
Jonkoping University College, School of Engineering, Jonkdping, Sweden,
2012.

[22] AUTOSAR, “AUTOSAR - Enabling Innovation” AUTOSAR, 2014.
[Online]. Available: http://www.autosar.org/. [Accessed 23 February 2016].

[23] A. Karlsson, “JTAG-Opimisation in CANoe” Department of Automatic
Control, Lund, Sweden, 2014.

77

Appendix

Test design

General design

The test cases are divided into functionality groups, correlating to the
requirements [19], as below:

* Software loading sequence — Services: 0x34, 0x36, 0x37

* P2 and P2 extended timings

All tests are implemented in CAPL and executed on a VT system using
CANoe.
Any parameter, state or environment property not mentioned in a test case

should be at its default setting.

Software loading sequence — Services: 0x34,
0x36, 0x37

The transfer of data in a flashing sequence is initiated by a Request Download
request (0x34), followed by Transfer Data request (0x36) and terminated by a
Request Transfer Exit request (0x37), how these requests are formulated are
governed by the UDS-standard [19]. These test cases aim to test that the ECU will
only accept correctly formulated requests and accept some variations that are
permitted within in the UDS-standard [19].

78

Test case design

The test cases will be categorized into a few main categories: test cases on the
Request Download request, test cases on the Transfer Data request, and general
test cases on the software loading sequence.

Test cases on Request Download UDS-requests

These test cases modify the parameters in the 0x34 request: Sending less/more
data than specified by modifying the memorySize [19, p.271] in a 0x34 request.
Sending incorrect addressAndLengthldentifier[19, p.271] in the 0x34 request.
Sending the wrong memory address by modifying the memoryAddress [19, p.271]
in the 0x34 request.

Send more data than requested memorySize

Request to download one (1) byte less in the memorySize parameter [19, p.271],
than the total data block size. Should trigger NRC in RequestTransferExit [19,
p-286]. (Extreme case: the last byte is sent in its own frame then NRC 24/71 could
be trigged in TransferData [19, p.283]).

Send less data than requested memorySize

Request to download one (1) byte more in the memorySize parameter [19, p.271],
than the total data block size. Should trigger NRC in RequestTransferExit [19,
p.286].

Send incorrect address in addressAndLengthldentifier

If the vehicle manufacturer uses 4 bytes (addressAndLengthldentifier =0xX4) to
represent the memoryAddress then request a representation using 1 bytes
(addressAndLengthldentifier =0xX1) but still sending 4 bytes of memoryAddress
and vice versa. Should trigger NRC in RequestDownload [19, p.273].

Send modified memoryAddress

Add one (1) byte to start address or block number (block identifier) written to the
memoryAddress of the block to be downloaded. Should trigger NRC in Request
Download and/or Request Transfer Exit [19, p.273].

Test cases on Transfer Data UDS-requests

These test cases modify the parameters in the 0x36 request. Test cases on the
blockSequenceCounter [19, p.282]. Test cases on the maxNumberOfBlockLength
[19,p.277] received from the RequestDownload positive response. General test
cases on modifying the binary data.

79

BlockSequenceCounter test cases
Test cases on the blockSequenceCounter [19, p.282].

Send blockSequenceCounter twice on first block

Send the same Transfer Data request with the same blockSequenceCounter on first
Transfer Data Request. Should not generate any NRC according to [19, p.281].

Send blockSequenceCounter twice with error on block 2.

Send the same blockSequenceCounter twice with correct data in the first message
and modified data in the next request. It is recommended that the ECU does not
write the data if it has already received the current blockSequenceCounter. This
will check if it does that or not [19, p.281]. Could generate incorrect checksum if
the second message is written to EEPROM or flash memory.

Send blockSequenceCounter twice on all messages

Send the same Transfer Data request with the same blockSequenceCounter.
Should not generate any NRC according to [19, p.281].

Send blockSequenceCounter fifty times on first on first block

Send the same Transfer Data request with the same blockSequenceCounter fifty
times (arbitrary number). Should not generate any NRC according to [19, p.281].

Send wrong first blockSequenceCounter

Send blockSequenceCounter = 2 on the first Transfer Data-request instead of one
(1) [19,p.280]. Should generate a NRC in Transfer Data [19, p.283].

Send wrong blockSequenceCounter after rollover

Send blockSequenceCounter = 0x01 after rollover from OxFF instead of
blockSequenceCounter = 0x00 [19, p. 280]. Should generate NRC in Transfer
Data [19, p.283]. Note: requires a large data block / small
maxNumberOfBlockLength to achieve a rollover from OxFF.

Send wrong blockSequenceCounter after rollover maxBlockLength 128

80

Send blockSequenceCounter = 0x01 after rollover from OxFF instead of
blockSequenceCounter = 0x00 [19, p. 280]. Should generate NRC in Transfer
Data [19, p.283]. If the ECU can handle a 128 byte Transfer Data request, then
this will generate rollovers of blockSequenceCounters more frequently than
previous test case.

MaxNumberOfBlockLength test cases

Test cases on the maxNumberOfBlockLength [19,p.277] received from the
Request Download positive response. There is no actual requirement in ISO-
14229-1 that Transfer Data-request, which is shorter than specified by the
maxNumberOfBlockLength, should be accepted. However, if they are not
accepted then ECU should send a NRC in Transfer Data [19, 283]. The last
Transfer Data-request may however be shorter which should be accepted by the
ECU according to the UDS-standard [19, p.277].

Subtract one byte from max block length

Send Transfer Data request, which is one (1)byte shorter than what is specified by
the maxNumberOfBlockLength. Possible NRC in Transfer Data if not supported
[19, p.283].

Set max block length to 128

Send Transfer Data request with a set length less than
MaxNumberOfBlockLength. Possible NRC in Transfer Data if not supported [19,
p.283].

General test cases on Transfer Data requests

Modify last byte of the binary data

Modifying the last data byte of the binary data should trigger a checksum error in
the respective vehicle manufacturer flashing sequence.

Modify first byte of the binary data

Modifying the last data byte of the binary data should trigger a checksum error in
the respective vehicle manufacturer flashing sequence.

81

Send empty block on first block

Send a Transfer Data Request with no data. Should trigger NRC in Transfer Data
due to minimum length check [19, p.283]. This message should at least not be
accepted.

Send empty block after last block

Send a Transfer Data Request with no data. Should trigger NRC in Transfer Data
in minimum length check [19, p.283]. (Could however trigger NRC 24 [19, p.283]
if sent as last Transfer Data UDS-request or NRC 31 if length not supported but
NRC 13 should be triggered first according to evaluation sequence. This is
however not followed by most manufacturers yet [19, s.284]).

Send more data by adding dummy block

Add one byte (0xFF) to the file-block, which is being downloaded. ECU should
notice the error at least on Transfer Exit Request (0x37) if not earlier and send
NRC.

Send less data by removing one byte

Removing last byte from the file-block, which is being downloaded. ECU should
notice the error at least on Transfer Exit Request (0x37) if not earlier and send
NRC.

7.1 P2 and P2 extended timings

7.1.1 Test cases on P2/P2 extended

Most timing failures regarding the P2/P2 extended [19, s.41] seem to occur during
Routine Control service [19, p.260] based on observations.
Refer to ISO 14229-2 for further details on P2Server and P2*Server [19,

p-41].

Test step warning if P2/P2 extended are exceeded by more than 10 %
Send a test step warning if the P2/P2 extended timings are exceeded by more
than 10 % (arbitrary number).

82

Test Step Fail If P2/P2 extended are exceeded by more than 10 % and 100
ms extra wait time

Send a test step fail if the P2/P2 extended timings are exceeded by more than
10 % (arbitrary number) and an extra wait time of 100 ms (arbitrary number).

83

Test case Accepted NRC 0x34 Non-acceptable NRC 0x34 |Accepted NRC 0x36 (Bold = special eval) [Non-acceptable NRC 0x36

SUBTRACT_ONE_BYTE_FROM_MAX_BLOCK_LENGTH 0x24, 0x71, 0x72
SET_MAX_BLOCK_LENGTH_TO_128 0x24, 0x71, 0x72
SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ON_FIRST_BLOCK No NRC 0x24, 0x73, OXXX
SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ERROR_ON_BLOCK_2 - - No NRC 0x24, 0x73, OXXX.
SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ON_ALL_MESSAGES - - No NRC 0x24, 0x73, OXXX.
SEND_BLOCK_SEQUENCE_COUNTER_FIFTY_TIMES_ON_FIRST_BLOCK - - No NRC 0x24, 0x73, OXXX
SEND_WRONG_FIRST_BLOCK_SEQUENCE_COUNTER - - 0x24, 0x73 -
SEND_WRONG_BLOCK_SEQUENCE_COUNTER_AFTER_ROLLOVER - - 0x24, 0x73 -
SEND_WRONG_BLOCK_SEQUENCE_COUNTER_AFTER_ROLLOVER_MAX_BLOCK_LENGTH_128 0x24, 0x24, 0x71, 0x72, 0X73
—
MODIFY_LAST_BYTE_IN_LAST_TRANSFER_DATA_REQUEST 0x24, 0x72
MODIFY_FIRST_BYTE_IN_FIRST_TRANSFER_DATA_REQUEST - - 0x24, 0x72 -
SEND_EMPTY_BLOCK_ON_FIRST_BLOCK - - 0x13, 0x24, 0x24, 0x31, 0X71 -
SEND_EMPTY_BLOCK_AFTER_LAST_BLOCK - - 0x13, 0x24 , 0x24, 0x31, 0x31 -
SEND_MORE_DATA_BY_ADDING_DUMMY_BYTE - - 0x13, 0x24, 0x71, 0x72, 073 -
SEND_LESS_DATA_BY_REMOVING_ONE_BYTE 0x13, 0x24, 0x71, 0x72, 0X73
—
SEND_MORE_DATA_THAN_REQUESTED_MEMORY_SIZE 0x24 0x13, 0x24, 0X71, 0X72
SEND_LESS_DATA_THAN_REQUESTED_MEMORY_SIZE 0x24 - 0x13, 0x24, 0X71, 072 -
SEND_INCORRECT_ADDRESS_IN_ADDRESS_AND_LENGTH_ID 0x13 - 0x24, 0x71 -
SEND_MODIFED_MEMORY_ADDRESS 0x31 0x24
—
SEND_SECOND_FILE_BLOCK_TWICE No NRC No NRC
DOWNLOAD_ONLY_SBL_AND_SECOND_BLOCK No NRC - No NRC -
DOWNLOAD_FILE_BLOCKS_IN_REVERSE_ORDER No NRC - No NRC -

Figure 0-1: List over accepted NRC:s in evaluation of services Request Download (0x34) and Transfer Data (0x36). There is an
additional evaluation on service 0x36 which evaluates "special" events, which generally only occur a limited amount of times, the
NRC:s corresponding to the special evaluation are marked with bold text. Note that there may be more NRC:s which are
acceptable, this list only contains those which have occurred during testing. Therefore consider adding acceptable NRC:s to
evaluation as they occur.

Test case Accepted NRC 0x37 |Non-: NRC 0x37 |Positi P on 0x34, 0x36, 0x37 |Comment

SUBTRACT_ONE_BYTE_FROM_MAX_BLOCK_LENGTH - - Accepted BlockLength might not supported by manufacturer
SET_MAX_BLOCK_LENGTH_TO_128 - - Accepted BlockLength might not supported by manufacturer
SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ON_FIRST_BLOCK No NRC No NRC Should be accepted
SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ERROR_ON_BLOCK_2 No NRC No NRC Should be accepted

SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ON_ALL_MESSAGES No NRC No NRC Should be accepted
SEND_BLOCK_SEQUENCE_COUNTER_FIFTY_TIMES_ON_FIRST_BLOCK No NRC No NRC Should be accepted

SEND_WRONG_FIRST_BLOCK_SEQUENCE_COUNTER No NRC No NRC Not-accepted on 0x36

SEND_WRONG_BLOCK_SEQUENCE_COUNTER_AFTER_ROLLOVER No NRC No NRC Not-accepted on 0x36
SEND_WRONG_BLOCK_SEQUENCE_COUNTER_AFTER_ROLLOVER_MAX_BLOCK_LENGTH_128 No NRC 0x24 Not-accepted on 0x36 BlockLength might not be supported by manufacturer
—
MODIFY_LAST_BYTE_IN_LAST_TRANSFER_DATA_REQUEST 0x24 Accepted

MODIFY_FIRST_BYTE_IN_FIRST_TRANSFER_DATA_REQUEST 0x24 - Accepted

SEND_EMPTY_BLOCK_ON_FIRST_BLOCK 0x24 - Not-accepted on 0x36

SEND_EMPTY_BLOCK_AFTER_LAST_BLOCK 0x24 - Not-accepted on 0x36

SEND_MORE_DATA_BY_ADDING_DUMMY_BYTE 0x22, 0x24 - Not-accepted on 0x37

SEND_LESS_DATA_BY_REMOVING_ONE_BYTE 0x22, 0x24 Not-accepted on 0x37
—
SEND_MORE_DATA_THAN_REQUESTED_MEMORY_SIZE 0x22, 0x24 Not-accepted on 0x37

SEND_LESS_DATA_THAN_REQUESTED_MEMORY_SIZE 0x22, 0x24 - Not-accepted on 0x37

SEND_INCORRECT_ADDRESS_IN_ADDRESS_AND_LENGTH_ID 0x24 - Not-accepted on 0x34

SEND_MODIFED_MEMORY_ADDRESS 0x24 Not-accepted on 0x37/34?
—
SEND_SECOND_FILE_BLOCK_TWICE No NRC All Should be accepted

DOWNLOAD_ONLY_SBL_AND_SECOND_BLOCK No NRC - All Should be accepted Requires that other blocks are valid before
DOWNLOAD_FILE_BLOCKS_IN_REVERSE_ORDER No NRC - All Should be P

Figure 0-2: List over accepted NRC:s in evaluation of service Request Transfer Exit (0x37). Note that there may be more NRC:s
which are acceptable, this list only contains those which have occurred during testing. Therefore consider adding acceptable NRC:s
to evaluation as they occur.

85

CheckMemory/ProgrammingDependencies/ValidApp |EvaluateChecksumFromRequestTransferExit |EvaluateCheckIfAppAlive |EvaluateECU_NonResponsive

SUBTRACT_ONE_BYTE_FROM_MAX_BLOCK_LENGTH
SET_MAX_BLOCK_LENGTH_TO_128

SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ON_FIRST_BLOCK
SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ERROR_ON_BLOCK_2
SEND_BLOCK_SEQUENCE_COUNTER_TWICE_ON_ALL_MESSAGES
SEND_BLOCK_SEQUENCE_COUNTER_FIFTY_TIMES_ON_FIRST_BLOCK
SEND_WRONG_FIRST_BLOCK_SEQUENCE_COUNTER
SEND_WRONG_BLOCK_SEQUENCE_COUNTER_AFTER_ROLLOVER
SEND_WRONG_BLOCK_SEQUENCE_COUNTER_AFTER_ROLLOVER_MAX_BLOCK_LENGTH_128

MODIFY_LAST BYTE_IN_LAST TRANSFER_DATA_REQUEST
MODIFY_FIRST_BYTE_IN_FIRST_TRANSFER_DATA_REQUEST
SEND_EMPTY_BLOCK_ON_FIRST_BLOCK
SEND_EMPTY_BLOCK_AFTER_LAST BLOCK
SEND_MORE_DATA_BY_ADDING_DUMMY_BYTE
SEND_LESS_DATA_BY_REMOVING_ONE_BYTE

SEND_MORE_DATA_THAN_REQUESTED_MEMORY_SIZE
SEND_LESS_DATA_THAN_REQUESTED_MEMORY_SIZE

SEND_INCORRECT_ADDRESS_IN_ADDRESS_AND_LENGTH_ID
SEND_MODIFED_MEMORY_ADDRESS

SEND_SECOND_FILE_BLOCK_TWICE
DOWNLOAD_ONLY_SBL_AND_SECOND_BLOCK s e correc
DOWNLOAD_FILE_BLOCKS_IN_REVERSE_ORDER c h c d -

Figure 0-3: List over evaluation of various checks, which are performed during the flashing sequence. The Routine Controls
CheckMemory, Programming dependencies and CheckValidApplication will return a correct or incorrect result. This result is
evaluated based on the test case, which has been run. Evaluation of checksum from Transfer Exit (0x37) will compare the
checksums and evaluate base of the test case if it is correct. EvaluateCheckAppAlive will check if it is okay that the application is
not running in the corresponding test case. EvaluateECU_NonResponsive will check if it is okay that the ECU is non-responsive in
the corresponding test case.

86

